Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem44 Structured version   Visualization version   GIF version

Theorem stoweidlem44 38937
 Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem44.1 𝑗𝜑
stoweidlem44.2 𝑡𝜑
stoweidlem44.3 𝐾 = (topGen‘ran (,))
stoweidlem44.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem44.5 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem44.6 (𝜑𝑀 ∈ ℕ)
stoweidlem44.7 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem44.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
stoweidlem44.9 𝑇 = 𝐽
stoweidlem44.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem44.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem44.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem44.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem44.14 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem44 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝑓,𝑗,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝑀,𝑔,𝑖,𝑡   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   ,𝑖,𝑗,𝑡,𝐺   𝐴,   𝑇,,𝑗   ,𝑍,𝑖,𝑡   𝑥,𝑗,𝑀,𝑡   𝑈,𝑗   𝑡,𝑝,𝑇   𝐴,𝑝   𝑃,𝑝   𝑈,𝑝   𝑍,𝑝   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,,𝑗,𝑝)   𝐴(𝑡,𝑖,𝑗)   𝑃(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗)   𝑄(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑖)   𝐺(𝑥,𝑝)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝑀(,𝑝)   𝑍(𝑥,𝑓,𝑔,𝑗)

Proof of Theorem stoweidlem44
StepHypRef Expression
1 stoweidlem44.2 . . . 4 𝑡𝜑
2 stoweidlem44.5 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
3 eqid 2610 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 eqid 2610 . . . 4 (𝑡𝑇 ↦ (1 / 𝑀)) = (𝑡𝑇 ↦ (1 / 𝑀))
5 stoweidlem44.6 . . . 4 (𝜑𝑀 ∈ ℕ)
65nnrecred 10943 . . . 4 (𝜑 → (1 / 𝑀) ∈ ℝ)
7 stoweidlem44.7 . . . . 5 (𝜑𝐺:(1...𝑀)⟶𝑄)
8 stoweidlem44.4 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
9 ssrab2 3650 . . . . . 6 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ⊆ 𝐴
108, 9eqsstri 3598 . . . . 5 𝑄𝐴
11 fss 5969 . . . . 5 ((𝐺:(1...𝑀)⟶𝑄𝑄𝐴) → 𝐺:(1...𝑀)⟶𝐴)
127, 10, 11sylancl 693 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝐴)
13 stoweidlem44.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
14 stoweidlem44.12 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem44.13 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
16 stoweidlem44.3 . . . . 5 𝐾 = (topGen‘ran (,))
17 stoweidlem44.9 . . . . 5 𝑇 = 𝐽
18 eqid 2610 . . . . 5 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
19 stoweidlem44.10 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
2019sselda 3568 . . . . 5 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
2116, 17, 18, 20fcnre 38207 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
221, 2, 3, 4, 5, 6, 12, 13, 14, 15, 21stoweidlem32 38925 . . 3 (𝜑𝑃𝐴)
238, 2, 5, 7, 21stoweidlem38 38931 . . . . . 6 ((𝜑𝑡𝑇) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
2423ex 449 . . . . 5 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
251, 24ralrimi 2940 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
26 stoweidlem44.14 . . . . 5 (𝜑𝑍𝑇)
278, 2, 5, 7, 21, 26stoweidlem37 38930 . . . 4 (𝜑 → (𝑃𝑍) = 0)
28 stoweidlem44.1 . . . . . . . . 9 𝑗𝜑
29 nfv 1830 . . . . . . . . 9 𝑗 𝑡 ∈ (𝑇𝑈)
3028, 29nfan 1816 . . . . . . . 8 𝑗(𝜑𝑡 ∈ (𝑇𝑈))
31 nfv 1830 . . . . . . . 8 𝑗0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
32 stoweidlem44.8 . . . . . . . . . 10 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
3332r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
34 df-rex 2902 . . . . . . . . 9 (∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡) ↔ ∃𝑗(𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡)))
3533, 34sylib 207 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑗(𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡)))
366ad2antrr 758 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (1 / 𝑀) ∈ ℝ)
37 simpll 786 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝜑)
38 eldifi 3694 . . . . . . . . . . 11 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
3938ad2antlr 759 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝑡𝑇)
40 fzfid 12634 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
418, 7, 21stoweidlem15 38908 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
4241an32s 842 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
4342simp1d 1066 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
4440, 43fsumrecl 14312 . . . . . . . . . 10 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
4537, 39, 44syl2anc 691 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
465nnred 10912 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
475nngt0d 10941 . . . . . . . . . . 11 (𝜑 → 0 < 𝑀)
4846, 47recgt0d 10837 . . . . . . . . . 10 (𝜑 → 0 < (1 / 𝑀))
4948ad2antrr 758 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (1 / 𝑀))
50 0red 9920 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 ∈ ℝ)
51 simprl 790 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝑗 ∈ (1...𝑀))
5237, 51, 393jca 1235 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇))
53 snfi 7923 . . . . . . . . . . . . . . 15 {𝑗} ∈ Fin
5453a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → {𝑗} ∈ Fin)
55 simpl1 1057 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝜑)
56 simpl3 1059 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑡𝑇)
57 elsni 4142 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ {𝑗} → 𝑖 = 𝑗)
5857adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑖 = 𝑗)
59 simpl2 1058 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑗 ∈ (1...𝑀))
6058, 59eqeltrd 2688 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑖 ∈ (1...𝑀))
6155, 56, 60, 43syl21anc 1317 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
6254, 61fsumrecl 14312 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) ∈ ℝ)
6352, 62syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) ∈ ℝ)
6450, 63readdcld 9948 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ∈ ℝ)
65 fzfi 12633 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ Fin
66 diffi 8077 . . . . . . . . . . . . . . 15 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
6765, 66mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
68 eldifi 3694 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((1...𝑀) ∖ {𝑗}) → 𝑖 ∈ (1...𝑀))
6968, 43sylan2 490 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
7067, 69fsumrecl 14312 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
7137, 39, 70syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
7271, 63readdcld 9948 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ∈ ℝ)
73 00id 10090 . . . . . . . . . . . 12 (0 + 0) = 0
74 simprr 792 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < ((𝐺𝑗)‘𝑡))
758, 7, 21stoweidlem15 38908 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (((𝐺𝑗)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑗)‘𝑡) ∧ ((𝐺𝑗)‘𝑡) ≤ 1))
7675simp1d 1066 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝐺𝑗)‘𝑡) ∈ ℝ)
7737, 51, 39, 76syl21anc 1317 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → ((𝐺𝑗)‘𝑡) ∈ ℝ)
7877recnd 9947 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → ((𝐺𝑗)‘𝑡) ∈ ℂ)
79 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝐺𝑖) = (𝐺𝑗))
8079fveq1d 6105 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8180sumsn 14319 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝑀) ∧ ((𝐺𝑗)‘𝑡) ∈ ℂ) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8251, 78, 81syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8374, 82breqtrrd 4611 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡))
8450, 63, 50, 83ltadd2dd 10075 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + 0) < (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
8573, 84syl5eqbrr 4619 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
86 0red 9920 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → 0 ∈ ℝ)
87703adant2 1073 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
88 simpll 786 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝜑)
8968adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑖 ∈ (1...𝑀))
90 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑡𝑇)
9188, 89, 90, 41syl21anc 1317 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
9291simp2d 1067 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 0 ≤ ((𝐺𝑖)‘𝑡))
9367, 69, 92fsumge0 14368 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 0 ≤ Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡))
94933adant2 1073 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → 0 ≤ Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡))
9586, 87, 62, 94leadd1dd 10520 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ≤ (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
9652, 95syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ≤ (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
9750, 64, 72, 85, 96ltletrd 10076 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
98 eq0 3888 . . . . . . . . . . . . . 14 ((((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}))
99 eldifn 3695 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) → ¬ 𝑥 ∈ {𝑗})
100 imnan 437 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((1...𝑀) ∖ {𝑗}) → ¬ 𝑥 ∈ {𝑗}) ↔ ¬ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗}))
10199, 100mpbi 219 . . . . . . . . . . . . . . 15 ¬ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗})
102 elin 3758 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) ↔ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗}))
103101, 102mtbir 312 . . . . . . . . . . . . . 14 ¬ 𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗})
10498, 103mpgbir 1717 . . . . . . . . . . . . 13 (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅
105104a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅)
106 undif1 3995 . . . . . . . . . . . . 13 (((1...𝑀) ∖ {𝑗}) ∪ {𝑗}) = ((1...𝑀) ∪ {𝑗})
107 snssi 4280 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → {𝑗} ⊆ (1...𝑀))
1081073ad2ant2 1076 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → {𝑗} ⊆ (1...𝑀))
109 ssequn2 3748 . . . . . . . . . . . . . 14 ({𝑗} ⊆ (1...𝑀) ↔ ((1...𝑀) ∪ {𝑗}) = (1...𝑀))
110108, 109sylib 207 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → ((1...𝑀) ∪ {𝑗}) = (1...𝑀))
111106, 110syl5req 2657 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (1...𝑀) = (((1...𝑀) ∖ {𝑗}) ∪ {𝑗}))
112 fzfid 12634 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (1...𝑀) ∈ Fin)
113433adantl2 1211 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
114113recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℂ)
115105, 111, 112, 114fsumsplit 14318 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
11652, 115syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
11797, 116breqtrrd 4611 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
11836, 45, 49, 117mulgt0d 10071 . . . . . . . 8 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
11930, 31, 35, 118exlimdd 2075 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1208, 2, 5, 7, 21stoweidlem30 38923 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑃𝑡) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
12138, 120sylan2 490 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
122119, 121breqtrrd 4611 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
123122ex 449 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇𝑈) → 0 < (𝑃𝑡)))
1241, 123ralrimi 2940 . . . 4 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
12525, 27, 1243jca 1235 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))
126 eleq1 2676 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝐴𝑃𝐴))
127 nfmpt1 4675 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1282, 127nfcxfr 2749 . . . . . . . . 9 𝑡𝑃
129128nfeq2 2766 . . . . . . . 8 𝑡 𝑝 = 𝑃
130 fveq1 6102 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑡) = (𝑃𝑡))
131130breq2d 4595 . . . . . . . . 9 (𝑝 = 𝑃 → (0 ≤ (𝑝𝑡) ↔ 0 ≤ (𝑃𝑡)))
132130breq1d 4593 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑡) ≤ 1 ↔ (𝑃𝑡) ≤ 1))
133131, 132anbi12d 743 . . . . . . . 8 (𝑝 = 𝑃 → ((0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
134129, 133ralbid 2966 . . . . . . 7 (𝑝 = 𝑃 → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
135 fveq1 6102 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝𝑍) = (𝑃𝑍))
136135eqeq1d 2612 . . . . . . 7 (𝑝 = 𝑃 → ((𝑝𝑍) = 0 ↔ (𝑃𝑍) = 0))
137130breq2d 4595 . . . . . . . 8 (𝑝 = 𝑃 → (0 < (𝑝𝑡) ↔ 0 < (𝑃𝑡)))
138129, 137ralbid 2966 . . . . . . 7 (𝑝 = 𝑃 → (∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))
139134, 136, 1383anbi123d 1391 . . . . . 6 (𝑝 = 𝑃 → ((∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))))
140126, 139anbi12d 743 . . . . 5 (𝑝 = 𝑃 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) ↔ (𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))))
141140spcegv 3267 . . . 4 (𝑃𝐴 → ((𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))) → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))))
14222, 141syl 17 . . 3 (𝜑 → ((𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))) → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))))
14322, 125, 142mp2and 711 . 2 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
144 df-rex 2902 . 2 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
145143, 144sylibr 223 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695  Ⅎwnf 1699   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   / cdiv 10563  ℕcn 10897  (,)cioo 12046  ...cfz 12197  Σcsu 14264  topGenctg 15921   Cn ccn 20838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841 This theorem is referenced by:  stoweidlem53  38946
 Copyright terms: Public domain W3C validator