Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shs00i | Structured version Visualization version GIF version |
Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shne0.1 | ⊢ 𝐴 ∈ Sℋ |
shs00.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shs00i | ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) ↔ (𝐴 +ℋ 𝐵) = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6558 | . . 3 ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) → (𝐴 +ℋ 𝐵) = (0ℋ +ℋ 0ℋ)) | |
2 | h0elsh 27497 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
3 | 2 | shs0i 27692 | . . 3 ⊢ (0ℋ +ℋ 0ℋ) = 0ℋ |
4 | 1, 3 | syl6eq 2660 | . 2 ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) → (𝐴 +ℋ 𝐵) = 0ℋ) |
5 | shne0.1 | . . . . . 6 ⊢ 𝐴 ∈ Sℋ | |
6 | shs00.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
7 | 5, 6 | shsub1i 27615 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
8 | sseq2 3590 | . . . . 5 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → (𝐴 ⊆ (𝐴 +ℋ 𝐵) ↔ 𝐴 ⊆ 0ℋ)) | |
9 | 7, 8 | mpbii 222 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐴 ⊆ 0ℋ) |
10 | shle0 27685 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
11 | 5, 10 | ax-mp 5 | . . . 4 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
12 | 9, 11 | sylib 207 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐴 = 0ℋ) |
13 | 6, 5 | shsub2i 27616 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 +ℋ 𝐵) |
14 | sseq2 3590 | . . . . 5 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → (𝐵 ⊆ (𝐴 +ℋ 𝐵) ↔ 𝐵 ⊆ 0ℋ)) | |
15 | 13, 14 | mpbii 222 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐵 ⊆ 0ℋ) |
16 | shle0 27685 | . . . . 5 ⊢ (𝐵 ∈ Sℋ → (𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ)) | |
17 | 6, 16 | ax-mp 5 | . . . 4 ⊢ (𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ) |
18 | 15, 17 | sylib 207 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐵 = 0ℋ) |
19 | 12, 18 | jca 553 | . 2 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → (𝐴 = 0ℋ ∧ 𝐵 = 0ℋ)) |
20 | 4, 19 | impbii 198 | 1 ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) ↔ (𝐴 +ℋ 𝐵) = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 (class class class)co 6549 Sℋ csh 27169 +ℋ cph 27172 0ℋc0h 27176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 ax-hilex 27240 ax-hfvadd 27241 ax-hvcom 27242 ax-hvass 27243 ax-hv0cl 27244 ax-hvaddid 27245 ax-hfvmul 27246 ax-hvmulid 27247 ax-hvmulass 27248 ax-hvdistr1 27249 ax-hvdistr2 27250 ax-hvmul0 27251 ax-hfi 27320 ax-his1 27323 ax-his2 27324 ax-his3 27325 ax-his4 27326 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-icc 12053 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-lm 20843 df-haus 20929 df-grpo 26731 df-gid 26732 df-ginv 26733 df-gdiv 26734 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-vs 26838 df-nmcv 26839 df-ims 26840 df-hnorm 27209 df-hvsub 27212 df-hlim 27213 df-sh 27448 df-ch 27462 df-ch0 27494 df-shs 27551 df-span 27552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |