Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0resrnlem Structured version   Visualization version   GIF version

Theorem sge0resrnlem 39296
 Description: The sum of nonnegative extended reals restricted to the range of a function is less or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0resrnlem.a (𝜑𝐴𝑉)
sge0resrnlem.f (𝜑𝐹:𝐵⟶(0[,]+∞))
sge0resrnlem.g (𝜑𝐺:𝐴𝐵)
sge0resrnlem.x (𝜑𝑋 ∈ 𝒫 𝐴)
sge0resrnlem.f1o (𝜑 → (𝐺𝑋):𝑋1-1-onto→ran 𝐺)
Assertion
Ref Expression
sge0resrnlem (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺)))

Proof of Theorem sge0resrnlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . 4 𝑦𝜑
2 nfv 1830 . . . 4 𝑥𝜑
3 fveq2 6103 . . . 4 (𝑦 = (𝐺𝑥) → (𝐹𝑦) = (𝐹‘(𝐺𝑥)))
4 sge0resrnlem.x . . . 4 (𝜑𝑋 ∈ 𝒫 𝐴)
5 sge0resrnlem.f1o . . . 4 (𝜑 → (𝐺𝑋):𝑋1-1-onto→ran 𝐺)
6 fvres 6117 . . . . 5 (𝑥𝑋 → ((𝐺𝑋)‘𝑥) = (𝐺𝑥))
76adantl 481 . . . 4 ((𝜑𝑥𝑋) → ((𝐺𝑋)‘𝑥) = (𝐺𝑥))
8 sge0resrnlem.f . . . . . 6 (𝜑𝐹:𝐵⟶(0[,]+∞))
98adantr 480 . . . . 5 ((𝜑𝑦 ∈ ran 𝐺) → 𝐹:𝐵⟶(0[,]+∞))
10 sge0resrnlem.g . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
11 frn 5966 . . . . . . . 8 (𝐺:𝐴𝐵 → ran 𝐺𝐵)
1210, 11syl 17 . . . . . . 7 (𝜑 → ran 𝐺𝐵)
1312adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ran 𝐺) → ran 𝐺𝐵)
14 simpr 476 . . . . . 6 ((𝜑𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺)
1513, 14sseldd 3569 . . . . 5 ((𝜑𝑦 ∈ ran 𝐺) → 𝑦𝐵)
169, 15ffvelrnd 6268 . . . 4 ((𝜑𝑦 ∈ ran 𝐺) → (𝐹𝑦) ∈ (0[,]+∞))
171, 2, 3, 4, 5, 7, 16sge0f1o 39275 . . 3 (𝜑 → (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹𝑦))) = (Σ^‘(𝑥𝑋 ↦ (𝐹‘(𝐺𝑥)))))
188, 12feqresmpt 6160 . . . 4 (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑦 ∈ ran 𝐺 ↦ (𝐹𝑦)))
1918fveq2d 6107 . . 3 (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹𝑦))))
20 fcompt 6306 . . . . . . 7 ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴𝐵) → (𝐹𝐺) = (𝑥𝐴 ↦ (𝐹‘(𝐺𝑥))))
218, 10, 20syl2anc 691 . . . . . 6 (𝜑 → (𝐹𝐺) = (𝑥𝐴 ↦ (𝐹‘(𝐺𝑥))))
2221reseq1d 5316 . . . . 5 (𝜑 → ((𝐹𝐺) ↾ 𝑋) = ((𝑥𝐴 ↦ (𝐹‘(𝐺𝑥))) ↾ 𝑋))
234elpwid 4118 . . . . . 6 (𝜑𝑋𝐴)
2423resmptd 5371 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐹‘(𝐺𝑥))) ↾ 𝑋) = (𝑥𝑋 ↦ (𝐹‘(𝐺𝑥))))
2522, 24eqtrd 2644 . . . 4 (𝜑 → ((𝐹𝐺) ↾ 𝑋) = (𝑥𝑋 ↦ (𝐹‘(𝐺𝑥))))
2625fveq2d 6107 . . 3 (𝜑 → (Σ^‘((𝐹𝐺) ↾ 𝑋)) = (Σ^‘(𝑥𝑋 ↦ (𝐹‘(𝐺𝑥)))))
2717, 19, 263eqtr4d 2654 . 2 (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘((𝐹𝐺) ↾ 𝑋)))
28 sge0resrnlem.a . . 3 (𝜑𝐴𝑉)
29 fco 5971 . . . 4 ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴𝐵) → (𝐹𝐺):𝐴⟶(0[,]+∞))
308, 10, 29syl2anc 691 . . 3 (𝜑 → (𝐹𝐺):𝐴⟶(0[,]+∞))
3128, 30sge0less 39285 . 2 (𝜑 → (Σ^‘((𝐹𝐺) ↾ 𝑋)) ≤ (Σ^‘(𝐹𝐺)))
3227, 31eqbrtrd 4605 1 (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950   ≤ cle 9954  [,]cicc 12049  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256 This theorem is referenced by:  sge0resrn  39297
 Copyright terms: Public domain W3C validator