Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fodjrnlem Structured version   Visualization version   GIF version

Theorem sge0fodjrnlem 39309
 Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fodjrnlem.k 𝑘𝜑
sge0fodjrnlem.n 𝑛𝜑
sge0fodjrnlem.bd (𝑘 = 𝐺𝐵 = 𝐷)
sge0fodjrnlem.c (𝜑𝐶𝑉)
sge0fodjrnlem.f (𝜑𝐹:𝐶onto𝐴)
sge0fodjrnlem.dj (𝜑Disj 𝑛𝐶 (𝐹𝑛))
sge0fodjrnlem.fng ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0fodjrnlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0fodjrnlem.b0 ((𝜑𝑘 = ∅) → 𝐵 = 0)
sge0fodjrnlem.z 𝑍 = (𝐹 “ {∅})
Assertion
Ref Expression
sge0fodjrnlem (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺   𝑘,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0fodjrnlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 sge0fodjrnlem.k . . . 4 𝑘𝜑
2 sge0fodjrnlem.c . . . . 5 (𝜑𝐶𝑉)
3 sge0fodjrnlem.f . . . . 5 (𝜑𝐹:𝐶onto𝐴)
4 fornex 7028 . . . . 5 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
52, 3, 4sylc 63 . . . 4 (𝜑𝐴 ∈ V)
6 difssd 3700 . . . 4 (𝜑 → (𝐴 ∖ {∅}) ⊆ 𝐴)
7 simpl 472 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝜑)
86sselda 3568 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝑘𝐴)
9 sge0fodjrnlem.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
107, 8, 9syl2anc 691 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝐵 ∈ (0[,]+∞))
11 simpl 472 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝜑)
12 dfin4 3826 . . . . . . . . . 10 (𝐴 ∩ {∅}) = (𝐴 ∖ (𝐴 ∖ {∅}))
1312eqcomi 2619 . . . . . . . . 9 (𝐴 ∖ (𝐴 ∖ {∅})) = (𝐴 ∩ {∅})
14 inss2 3796 . . . . . . . . 9 (𝐴 ∩ {∅}) ⊆ {∅}
1513, 14eqsstri 3598 . . . . . . . 8 (𝐴 ∖ (𝐴 ∖ {∅})) ⊆ {∅}
16 id 22 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})))
1715, 16sseldi 3566 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ {∅})
18 elsni 4142 . . . . . . 7 (𝑘 ∈ {∅} → 𝑘 = ∅)
1917, 18syl 17 . . . . . 6 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 = ∅)
2019adantl 481 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝑘 = ∅)
21 sge0fodjrnlem.b0 . . . . 5 ((𝜑𝑘 = ∅) → 𝐵 = 0)
2211, 20, 21syl2anc 691 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝐵 = 0)
231, 5, 6, 10, 22sge0ss 39305 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑘𝐴𝐵)))
2423eqcomd 2616 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)))
25 sge0fodjrnlem.n . . 3 𝑛𝜑
26 sge0fodjrnlem.bd . . 3 (𝑘 = 𝐺𝐵 = 𝐷)
27 difexg 4735 . . . 4 (𝐶𝑉 → (𝐶𝑍) ∈ V)
282, 27syl 17 . . 3 (𝜑 → (𝐶𝑍) ∈ V)
29 eqid 2610 . . . . 5 (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶 ↦ (𝐹𝑛))
30 fof 6028 . . . . . . 7 (𝐹:𝐶onto𝐴𝐹:𝐶𝐴)
313, 30syl 17 . . . . . 6 (𝜑𝐹:𝐶𝐴)
3231ffvelrnda 6267 . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
33 sge0fodjrnlem.dj . . . . 5 (𝜑Disj 𝑛𝐶 (𝐹𝑛))
34 fveq2 6103 . . . . . . 7 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534neeq1d 2841 . . . . . 6 (𝑚 = 𝑛 → ((𝐹𝑚) ≠ ∅ ↔ (𝐹𝑛) ≠ ∅))
3635cbvrabv 3172 . . . . 5 {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} = {𝑛𝐶 ∣ (𝐹𝑛) ≠ ∅}
3734cbvmptv 4678 . . . . . . 7 (𝑚𝐶 ↦ (𝐹𝑚)) = (𝑛𝐶 ↦ (𝐹𝑛))
3837rneqi 5273 . . . . . 6 ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran (𝑛𝐶 ↦ (𝐹𝑛))
3938difeq1i 3686 . . . . 5 (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}) = (ran (𝑛𝐶 ↦ (𝐹𝑛)) ∖ {∅})
4025, 29, 32, 33, 36, 39disjf1o 38373 . . . 4 (𝜑 → ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
4131feqmptd 6159 . . . . . 6 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
42 difssd 3700 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑍) ⊆ 𝐶)
4342sselda 3568 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛𝐶)
44 eldifi 3694 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (𝐶𝑍) → 𝑛𝐶)
4544adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → 𝑛𝐶)
46 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) = ∅ → (𝐹𝑛) = ∅)
47 fvex 6113 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑛) ∈ V
4847elsn 4140 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) ∈ {∅} ↔ (𝐹𝑛) = ∅)
4946, 48sylibr 223 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑛) = ∅ → (𝐹𝑛) ∈ {∅})
5049adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) ∈ {∅})
5145, 50jca 553 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5251adantll 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5331ffnd 5959 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐶)
54 elpreima 6245 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝐶 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5655ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5752, 56mpbird 246 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ (𝐹 “ {∅}))
58 sge0fodjrnlem.z . . . . . . . . . . . . . . 15 𝑍 = (𝐹 “ {∅})
5957, 58syl6eleqr 2699 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛𝑍)
60 eldifn 3695 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝐶𝑍) → ¬ 𝑛𝑍)
6160ad2antlr 759 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → ¬ 𝑛𝑍)
6259, 61pm2.65da 598 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐶𝑍)) → ¬ (𝐹𝑛) = ∅)
6362neqned 2789 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) ≠ ∅)
6443, 63jca 553 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6535elrab 3331 . . . . . . . . . . 11 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6664, 65sylibr 223 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
6766ex 449 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
6865simplbi 475 . . . . . . . . . . . . . . 15 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛𝐶)
6968adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛𝐶)
7058eleq2i 2680 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7170biimpi 205 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑛 ∈ (𝐹 “ {∅}))
7355adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
7472, 73mpbid 221 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
7574simprd 478 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ {∅})
76 elsni 4142 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ {∅} → (𝐹𝑛) = ∅)
7775, 76syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ∅)
7877adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) = ∅)
7965simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → (𝐹𝑛) ≠ ∅)
8079ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) ≠ ∅)
8180neneqd 2787 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → ¬ (𝐹𝑛) = ∅)
8278, 81pm2.65da 598 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → ¬ 𝑛𝑍)
8369, 82eldifd 3551 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛 ∈ (𝐶𝑍))
8483ex 449 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8525, 84ralrimi 2940 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
86 dfss3 3558 . . . . . . . . . . 11 ({𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍) ↔ ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
8785, 86sylibr 223 . . . . . . . . . 10 (𝜑 → {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍))
8887sseld 3567 . . . . . . . . 9 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8967, 88impbid 201 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9025, 89alrimi 2069 . . . . . . 7 (𝜑 → ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
91 dfcleq 2604 . . . . . . 7 ((𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9290, 91sylibr 223 . . . . . 6 (𝜑 → (𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
9341, 92reseq12d 5318 . . . . 5 (𝜑 → (𝐹 ↾ (𝐶𝑍)) = ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9441, 37syl6eqr 2662 . . . . . . . . 9 (𝜑𝐹 = (𝑚𝐶 ↦ (𝐹𝑚)))
9594eqcomd 2616 . . . . . . . 8 (𝜑 → (𝑚𝐶 ↦ (𝐹𝑚)) = 𝐹)
9695rneqd 5274 . . . . . . 7 (𝜑 → ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran 𝐹)
97 forn 6031 . . . . . . . 8 (𝐹:𝐶onto𝐴 → ran 𝐹 = 𝐴)
983, 97syl 17 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
9996, 98eqtr2d 2645 . . . . . 6 (𝜑𝐴 = ran (𝑚𝐶 ↦ (𝐹𝑚)))
10099difeq1d 3689 . . . . 5 (𝜑 → (𝐴 ∖ {∅}) = (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
10193, 92, 100f1oeq123d 6046 . . . 4 (𝜑 → ((𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}) ↔ ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅})))
10240, 101mpbird 246 . . 3 (𝜑 → (𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}))
103 fvres 6117 . . . . 5 (𝑛 ∈ (𝐶𝑍) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
104103adantl 481 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
105 simpl 472 . . . . 5 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝜑)
106 sge0fodjrnlem.fng . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
107105, 43, 106syl2anc 691 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) = 𝐺)
108104, 107eqtrd 2644 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = 𝐺)
1091, 25, 26, 28, 102, 108, 10sge0f1o 39275 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)))
110106eqcomd 2616 . . . . . 6 ((𝜑𝑛𝐶) → 𝐺 = (𝐹𝑛))
111110, 32eqeltrd 2688 . . . . 5 ((𝜑𝑛𝐶) → 𝐺𝐴)
112105, 43, 111syl2anc 691 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐺𝐴)
113112ex 449 . . . . 5 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝐺𝐴))
114113imdistani 722 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝜑𝐺𝐴))
115 nfcv 2751 . . . . 5 𝑘𝐺
116 nfv 1830 . . . . . . 7 𝑘 𝐺𝐴
1171, 116nfan 1816 . . . . . 6 𝑘(𝜑𝐺𝐴)
118 nfv 1830 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
119117, 118nfim 1813 . . . . 5 𝑘((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))
120 eleq1 2676 . . . . . . 7 (𝑘 = 𝐺 → (𝑘𝐴𝐺𝐴))
121120anbi2d 736 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘𝐴) ↔ (𝜑𝐺𝐴)))
12226eleq1d 2672 . . . . . 6 (𝑘 = 𝐺 → (𝐵 ∈ (0[,]+∞) ↔ 𝐷 ∈ (0[,]+∞)))
123121, 122imbi12d 333 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))))
124115, 119, 123, 9vtoclgf 3237 . . . 4 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞)))
125112, 114, 124sylc 63 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐷 ∈ (0[,]+∞))
126 simpl 472 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝜑)
127 eldifi 3694 . . . . . 6 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝐶)
128127adantl 481 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝐶)
129126, 128, 111syl2anc 691 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺𝐴)
130 dfin4 3826 . . . . . . . . 9 (𝑍𝐶) = (𝑍 ∖ (𝑍𝐶))
131 difss 3699 . . . . . . . . 9 (𝑍 ∖ (𝑍𝐶)) ⊆ 𝑍
132130, 131eqsstri 3598 . . . . . . . 8 (𝑍𝐶) ⊆ 𝑍
133 inss2 3796 . . . . . . . . . 10 (𝐶𝑍) ⊆ 𝑍
134 id 22 . . . . . . . . . . 11 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶 ∖ (𝐶𝑍)))
135 dfin4 3826 . . . . . . . . . . . 12 (𝐶𝑍) = (𝐶 ∖ (𝐶𝑍))
136135eqcomi 2619 . . . . . . . . . . 11 (𝐶 ∖ (𝐶𝑍)) = (𝐶𝑍)
137134, 136syl6eleq 2698 . . . . . . . . . 10 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶𝑍))
138133, 137sseldi 3566 . . . . . . . . 9 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
139138, 127elind 3760 . . . . . . . 8 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝑍𝐶))
140132, 139sseldi 3566 . . . . . . 7 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
141140adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝑍)
14277eqcomd 2616 . . . . . . 7 ((𝜑𝑛𝑍) → ∅ = (𝐹𝑛))
143 simpl 472 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝜑)
14474simpld 474 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝐶)
145143, 144, 106syl2anc 691 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) = 𝐺)
146142, 145eqtr2d 2645 . . . . . 6 ((𝜑𝑛𝑍) → 𝐺 = ∅)
147126, 141, 146syl2anc 691 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺 = ∅)
148126, 147jca 553 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → (𝜑𝐺 = ∅))
149 nfv 1830 . . . . . . 7 𝑘 𝐺 = ∅
1501, 149nfan 1816 . . . . . 6 𝑘(𝜑𝐺 = ∅)
151 nfv 1830 . . . . . 6 𝑘 𝐷 = 0
152150, 151nfim 1813 . . . . 5 𝑘((𝜑𝐺 = ∅) → 𝐷 = 0)
153 eqeq1 2614 . . . . . . 7 (𝑘 = 𝐺 → (𝑘 = ∅ ↔ 𝐺 = ∅))
154153anbi2d 736 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘 = ∅) ↔ (𝜑𝐺 = ∅)))
15526eqeq1d 2612 . . . . . 6 (𝑘 = 𝐺 → (𝐵 = 0 ↔ 𝐷 = 0))
156154, 155imbi12d 333 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘 = ∅) → 𝐵 = 0) ↔ ((𝜑𝐺 = ∅) → 𝐷 = 0)))
157115, 152, 156, 21vtoclgf 3237 . . . 4 (𝐺𝐴 → ((𝜑𝐺 = ∅) → 𝐷 = 0))
158129, 148, 157sylc 63 . . 3 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐷 = 0)
15925, 2, 42, 125, 158sge0ss 39305 . 2 (𝜑 → (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)) = (Σ^‘(𝑛𝐶𝐷)))
16024, 109, 1593eqtrd 2648 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  Vcvv 3173   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125  Disj wdisj 4553   ↦ cmpt 4643  ◡ccnv 5037  ran crn 5039   ↾ cres 5040   “ cima 5041   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  [,]cicc 12049  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256 This theorem is referenced by:  sge0fodjrn  39310
 Copyright terms: Public domain W3C validator