Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcidALTV Structured version   Visualization version   GIF version

Theorem ringcidALTV 41846
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringccatALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringcidALTV.b 𝐵 = (Base‘𝐶)
ringcidALTV.o 1 = (Id‘𝐶)
ringcidALTV.u (𝜑𝑈𝑉)
ringcidALTV.x (𝜑𝑋𝐵)
ringcidALTV.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
ringcidALTV (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem ringcidALTV
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ringcidALTV.o . . . 4 1 = (Id‘𝐶)
2 ringcidALTV.u . . . . . 6 (𝜑𝑈𝑉)
3 ringccatALTV.c . . . . . . 7 𝐶 = (RingCatALTV‘𝑈)
4 ringcidALTV.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4ringccatidALTV 41844 . . . . . 6 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
62, 5syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
76simprd 478 . . . 4 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
81, 7syl5eq 2656 . . 3 (𝜑1 = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
9 fveq2 6103 . . . . 5 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
109adantl 481 . . . 4 ((𝜑𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
1110reseq2d 5317 . . 3 ((𝜑𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋)))
12 ringcidALTV.x . . 3 (𝜑𝑋𝐵)
13 fvex 6113 . . . 4 (Base‘𝑋) ∈ V
14 resiexg 6994 . . . 4 ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V)
168, 11, 12, 15fvmptd 6197 . 2 (𝜑 → ( 1𝑋) = ( I ↾ (Base‘𝑋)))
17 ringcidALTV.s . . 3 𝑆 = (Base‘𝑋)
1817reseq2i 5314 . 2 ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋))
1916, 18syl6eqr 2662 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643   I cid 4948  cres 5040  cfv 5804  Basecbs 15695  Catccat 16148  Idccid 16149  RingCatALTVcringcALTV 41796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-hom 15793  df-cco 15794  df-0g 15925  df-cat 16152  df-cid 16153  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538  df-ringcALTV 41798
This theorem is referenced by:  ringcsectALTV  41847  funcringcsetclem7ALTV  41857  srhmsubcALTV  41887
  Copyright terms: Public domain W3C validator