Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubcALTV Structured version   Visualization version   GIF version

Theorem srhmsubcALTV 41887
Description: According to df-subc 16295, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16323 and subcss2 16326). Therefore, the set of special ring homomorphisms (i.e. ring homomorphisms from a special ring to another ring of that kind) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = (𝑈𝑆)
srhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubcALTV (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubcALTV
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubcALTV.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1 2676 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubcALTV.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3256 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3572 . . . . 5 𝑆 ⊆ Ring
6 sslin 3801 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7syl5eqss 3612 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 3587 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2610 . . . . . . 7 (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈)
11 eqid 2610 . . . . . . 7 (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈))
12 simpl 472 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2610 . . . . . . 7 (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈))
143, 1srhmsubcALTVlem2 41885 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
1514adantrr 749 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
163, 1srhmsubcALTVlem2 41885 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1716adantrl 748 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1810, 11, 12, 13, 15, 17ringchomALTV 41840 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18syl5sseqr 3617 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
20 srhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 6558 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 790 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 792 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovex 6577 . . . . . . 7 (𝑥 RingHom 𝑦) ∈ V
2726a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2821, 23, 24, 25, 27ovmpt2d 6686 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
29 eqid 2610 . . . . . 6 (Homf ‘(RingCatALTV‘𝑈)) = (Homf ‘(RingCatALTV‘𝑈))
3029, 11, 13, 15, 17homfval 16175 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
3119, 28, 303sstr4d 3611 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
3231ralrimivva 2954 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
33 ovex 6577 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3420, 33fnmpt2i 7128 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3534a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3629, 11homffn 16176 . . . . 5 (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))
37 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3810, 11, 37ringcbasALTV 41838 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCatALTV‘𝑈)) = (𝑈 ∩ Ring))
3938eqcomd 2616 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCatALTV‘𝑈)))
4039sqxpeqd 5065 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈))))
4140fneq2d 5896 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))))
4236, 41mpbiri 247 . . . 4 (𝑈𝑉 → (Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
43 inex1g 4729 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4435, 42, 43isssc 16303 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))))
458, 32, 44mpbir2and 959 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCatALTV‘𝑈)))
461elin2 3763 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
474adantl 481 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4846, 47sylbi 206 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4948adantl 481 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
50 eqid 2610 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5150idrhm 18554 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5249, 51syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
53 eqid 2610 . . . . . 6 (Id‘(RingCatALTV‘𝑈)) = (Id‘(RingCatALTV‘𝑈))
54 simpl 472 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5510, 11, 53, 54, 14, 50ringcidALTV 41846 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5620a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
57 oveq12 6558 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5857adantl 481 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
59 simpr 476 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
60 ovex 6577 . . . . . . 7 (𝑥 RingHom 𝑥) ∈ V
6160a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6256, 58, 59, 59, 61ovmpt2d 6686 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6352, 55, 623eltr4d 2703 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
64 eqid 2610 . . . . . . . . 9 (comp‘(RingCatALTV‘𝑈)) = (comp‘(RingCatALTV‘𝑈))
6510ringccatALTV 41845 . . . . . . . . . 10 (𝑈𝑉 → (RingCatALTV‘𝑈) ∈ Cat)
6665ad3antrrr 762 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCatALTV‘𝑈) ∈ Cat)
6714adantr 480 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6867adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6916ad2ant2r 779 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
7069adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
713, 1srhmsubcALTVlem2 41885 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7271ad2ant2rl 781 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7372adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7454adantr 480 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
75 simpl 472 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7659, 75anim12i 588 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7774, 76jca 553 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
783, 1, 20srhmsubcALTVlem3 41886 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7977, 78syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
8079eleq2d 2673 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8180biimpcd 238 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8281adantr 480 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8382impcom 445 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
843, 1, 20srhmsubcALTVlem3 41886 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8584adantlr 747 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8685eleq2d 2673 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8786biimpd 218 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8887adantld 482 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8988imp 444 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
9011, 13, 64, 66, 68, 70, 73, 83, 89catcocl 16169 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9110, 11, 74, 13, 67, 72ringchomALTV 41840 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9291eqcomd 2616 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9392adantr 480 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9490, 93eleqtrrd 2691 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9520a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
96 oveq12 6558 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9796adantl 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9859adantr 480 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
99 simprr 792 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
100 ovex 6577 . . . . . . . . . 10 (𝑥 RingHom 𝑧) ∈ V
101100a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
10295, 97, 98, 99, 101ovmpt2d 6686 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
103102adantr 480 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10494, 103eleqtrrd 2691 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
105104ralrimivva 2954 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
106105ralrimivva 2954 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10763, 106jca 553 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
108107ralrimiva 2949 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10929, 53, 64, 65, 35issubc2 16319 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
11045, 108, 109mpbir2and 959 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  cop 4131   class class class wbr 4583   I cid 4948   × cxp 5036  cres 5040   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149  Homf chomf 16150  cat cssc 16290  Subcatcsubc 16292  Ringcrg 18370   RingHom crh 18535  RingCatALTVcringcALTV 41796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-hom 15793  df-cco 15794  df-0g 15925  df-cat 16152  df-cid 16153  df-homf 16154  df-ssc 16293  df-subc 16295  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538  df-ringcALTV 41798
This theorem is referenced by:  sringcatALTV  41888  crhmsubcALTV  41889  drhmsubcALTV  41891  fldhmsubcALTV  41895
  Copyright terms: Public domain W3C validator