Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre4 Structured version   Visualization version   GIF version

Theorem rfcnpre4 38216
 Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre4.1 𝑡𝐹
rfcnpre4.2 𝐾 = (topGen‘ran (,))
rfcnpre4.3 𝑇 = 𝐽
rfcnpre4.4 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
rfcnpre4.5 (𝜑𝐵 ∈ ℝ)
rfcnpre4.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre4
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre4.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre4.3 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2610 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre4.6 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 38207 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 5958 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6245 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
9 mnfxr 9975 . . . . . . . . 9 -∞ ∈ ℝ*
10 rfcnpre4.5 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1110rexrd 9968 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
13 elioc1 12088 . . . . . . . . 9 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
149, 12, 13sylancr 694 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
15 simpr3 1062 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)) → (𝐹𝑠) ≤ 𝐵)
165fnvinran 38196 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 9968 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 480 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ*)
1916adantr 480 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ)
20 mnflt 11833 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → -∞ < (𝐹𝑠))
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → -∞ < (𝐹𝑠))
22 simpr 476 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ≤ 𝐵)
2318, 21, 223jca 1235 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵))
2415, 23impbida 873 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2514, 24bitrd 267 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2625pm5.32da 671 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
278, 26bitrd 267 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
28 nfcv 2751 . . . . . 6 𝑡𝑠
29 nfcv 2751 . . . . . 6 𝑡𝑇
30 rfcnpre4.1 . . . . . . . 8 𝑡𝐹
3130, 28nffv 6110 . . . . . . 7 𝑡(𝐹𝑠)
32 nfcv 2751 . . . . . . 7 𝑡
33 nfcv 2751 . . . . . . 7 𝑡𝐵
3431, 32, 33nfbr 4629 . . . . . 6 𝑡(𝐹𝑠) ≤ 𝐵
35 fveq2 6103 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq1d 4593 . . . . . 6 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ 𝐵 ↔ (𝐹𝑠) ≤ 𝐵))
3728, 29, 34, 36elrabf 3329 . . . . 5 (𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵} ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵))
3827, 37syl6bbr 277 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ 𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}))
3938eqrdv 2608 . . 3 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵})
40 rfcnpre4.4 . . 3 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
4139, 40syl6eqr 2662 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = 𝐴)
42 iocmnfcld 22382 . . . . 5 (𝐵 ∈ ℝ → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
4310, 42syl 17 . . . 4 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6106 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44syl6eleqr 2699 . . 3 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘𝐾))
46 cnclima 20882 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,]𝐵) ∈ (Clsd‘𝐾)) → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 691 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2689 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Ⅎwnfc 2738  {crab 2900  ∪ cuni 4372   class class class wbr 4583  ◡ccnv 5037  ran crn 5039   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  (,)cioo 12046  (,]cioc 12047  topGenctg 15921  Clsdccld 20630   Cn ccn 20838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050  df-ioc 12051  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cn 20841 This theorem is referenced by:  stoweidlem59  38952
 Copyright terms: Public domain W3C validator