Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qirropth Structured version   Visualization version   GIF version

Theorem qirropth 36491
 Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
qirropth ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem qirropth
StepHypRef Expression
1 eldifn 3695 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ ℚ) → ¬ 𝐴 ∈ ℚ)
213ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ¬ 𝐴 ∈ ℚ)
32adantr 480 . . . . . 6 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → ¬ 𝐴 ∈ ℚ)
4 simpll1 1093 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ (ℂ ∖ ℚ))
54eldifad 3552 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℂ)
6 simp2r 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐶 ∈ ℚ)
76ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℚ)
8 qcn 11678 . . . . . . . . . . . 12 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
97, 8syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℂ)
10 simp3r 1083 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐸 ∈ ℚ)
1110ad2antrr 758 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℚ)
12 qcn 11678 . . . . . . . . . . . 12 (𝐸 ∈ ℚ → 𝐸 ∈ ℂ)
1311, 12syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℂ)
145, 9, 13subdid 10365 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · (𝐶𝐸)) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))
15 qsubcl 11683 . . . . . . . . . . . . 13 ((𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ) → (𝐶𝐸) ∈ ℚ)
167, 11, 15syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ∈ ℚ)
17 qcn 11678 . . . . . . . . . . . 12 ((𝐶𝐸) ∈ ℚ → (𝐶𝐸) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ∈ ℂ)
1918, 5mulcomd 9940 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) · 𝐴) = (𝐴 · (𝐶𝐸)))
20 simplr 788 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
21 simp2l 1080 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐵 ∈ ℚ)
2221ad2antrr 758 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℚ)
23 qcn 11678 . . . . . . . . . . . . 13 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
2422, 23syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℂ)
255, 9mulcld 9939 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐶) ∈ ℂ)
26 simp3l 1082 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐷 ∈ ℚ)
2726ad2antrr 758 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℚ)
28 qcn 11678 . . . . . . . . . . . . 13 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℂ)
305, 13mulcld 9939 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ)
3124, 25, 29, 30addsubeq4d 10322 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐷𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))))
3220, 31mpbid 221 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))
3314, 19, 323eqtr4d 2654 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) · 𝐴) = (𝐷𝐵))
34 qsubcl 11683 . . . . . . . . . . . 12 ((𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐷𝐵) ∈ ℚ)
3527, 22, 34syl2anc 691 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) ∈ ℚ)
36 qcn 11678 . . . . . . . . . . 11 ((𝐷𝐵) ∈ ℚ → (𝐷𝐵) ∈ ℂ)
3735, 36syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) ∈ ℂ)
38 simpr 476 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ¬ 𝐶 = 𝐸)
39 subeq0 10186 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶𝐸) = 0 ↔ 𝐶 = 𝐸))
4039necon3abid 2818 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸))
419, 13, 40syl2anc 691 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸))
4238, 41mpbird 246 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ≠ 0)
4337, 18, 5, 42divmuld 10702 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (((𝐷𝐵) / (𝐶𝐸)) = 𝐴 ↔ ((𝐶𝐸) · 𝐴) = (𝐷𝐵)))
4433, 43mpbird 246 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷𝐵) / (𝐶𝐸)) = 𝐴)
45 qdivcl 11685 . . . . . . . . 9 (((𝐷𝐵) ∈ ℚ ∧ (𝐶𝐸) ∈ ℚ ∧ (𝐶𝐸) ≠ 0) → ((𝐷𝐵) / (𝐶𝐸)) ∈ ℚ)
4635, 16, 42, 45syl3anc 1318 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷𝐵) / (𝐶𝐸)) ∈ ℚ)
4744, 46eqeltrrd 2689 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℚ)
4847ex 449 . . . . . 6 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (¬ 𝐶 = 𝐸𝐴 ∈ ℚ))
493, 48mt3d 139 . . . . 5 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐶 = 𝐸)
50 simpl2l 1107 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℚ)
5150, 23syl 17 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℂ)
5251adantr 480 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 ∈ ℂ)
53 simpl3l 1109 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℚ)
5453, 28syl 17 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℂ)
5554adantr 480 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐷 ∈ ℂ)
56 simpl1 1057 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ (ℂ ∖ ℚ))
5756eldifad 3552 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ ℂ)
58 simpl3r 1110 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℚ)
5958, 12syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℂ)
6057, 59mulcld 9939 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐴 · 𝐸) ∈ ℂ)
6160adantr 480 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ)
62 simpr 476 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐶 = 𝐸)
6362eqcomd 2616 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐸 = 𝐶)
6463oveq2d 6565 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) = (𝐴 · 𝐶))
6564oveq2d 6565 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐵 + (𝐴 · 𝐶)))
66 simplr 788 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
6765, 66eqtrd 2644 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐷 + (𝐴 · 𝐸)))
6852, 55, 61, 67addcan2ad 10121 . . . . . 6 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 = 𝐷)
6968ex 449 . . . . 5 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸𝐵 = 𝐷))
7049, 69jcai 557 . . . 4 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸𝐵 = 𝐷))
7170ancomd 466 . . 3 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐵 = 𝐷𝐶 = 𝐸))
7271ex 449 . 2 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸)))
73 id 22 . . 3 (𝐵 = 𝐷𝐵 = 𝐷)
74 oveq2 6557 . . 3 (𝐶 = 𝐸 → (𝐴 · 𝐶) = (𝐴 · 𝐸))
7573, 74oveqan12d 6568 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
7672, 75impbid1 214 1 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537  (class class class)co 6549  ℂcc 9813  0cc0 9815   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  ℚcq 11664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-q 11665 This theorem is referenced by:  rmxypairf1o  36494  rmxycomplete  36500  rmxyneg  36503  rmxyadd  36504  rmxy1  36505  rmxy0  36506  jm2.22  36580
 Copyright terms: Public domain W3C validator