Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Structured version   Visualization version   GIF version

Theorem rmxypairf1o 36494
Description: The function used to extract rational and irrational parts in df-rmx 36484 and df-rmy 36485 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Distinct variable group:   𝑏,𝑐,𝑑,𝑎,𝐴

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 6577 . . . 4 ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ∈ V
2 eqid 2610 . . . 4 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
31, 2fnmpti 5935 . . 3 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ)
43a1i 11 . 2 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ))
5 vex 3176 . . . . . . . . . 10 𝑐 ∈ V
6 vex 3176 . . . . . . . . . 10 𝑑 ∈ V
75, 6op1std 7069 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → (1st𝑏) = 𝑐)
85, 6op2ndd 7070 . . . . . . . . . 10 (𝑏 = ⟨𝑐, 𝑑⟩ → (2nd𝑏) = 𝑑)
98oveq2d 6565 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · 𝑑))
107, 9oveq12d 6567 . . . . . . . 8 (𝑏 = ⟨𝑐, 𝑑⟩ → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1110eqeq2d 2620 . . . . . . 7 (𝑏 = ⟨𝑐, 𝑑⟩ → (𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))))
1211rexxp 5186 . . . . . 6 (∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1312bicomi 213 . . . . 5 (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
1413a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
1514abbidv 2728 . . 3 (𝐴 ∈ (ℤ‘2) → {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))})
162rnmpt 5292 . . 3 ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))}
1715, 16syl6reqr 2663 . 2 (𝐴 ∈ (ℤ‘2) → ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
18 fveq2 6103 . . . . . . . 8 (𝑏 = 𝑐 → (1st𝑏) = (1st𝑐))
19 fveq2 6103 . . . . . . . . 9 (𝑏 = 𝑐 → (2nd𝑏) = (2nd𝑐))
2019oveq2d 6565 . . . . . . . 8 (𝑏 = 𝑐 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑐)))
2118, 20oveq12d 6567 . . . . . . 7 (𝑏 = 𝑐 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
22 ovex 6577 . . . . . . 7 ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) ∈ V
2321, 2, 22fvmpt 6191 . . . . . 6 (𝑐 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
2423ad2antrl 760 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
25 fveq2 6103 . . . . . . . 8 (𝑏 = 𝑑 → (1st𝑏) = (1st𝑑))
26 fveq2 6103 . . . . . . . . 9 (𝑏 = 𝑑 → (2nd𝑏) = (2nd𝑑))
2726oveq2d 6565 . . . . . . . 8 (𝑏 = 𝑑 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))
2825, 27oveq12d 6567 . . . . . . 7 (𝑏 = 𝑑 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
29 ovex 6577 . . . . . . 7 ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ∈ V
3028, 2, 29fvmpt 6191 . . . . . 6 (𝑑 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3130ad2antll 761 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3224, 31eqeq12d 2625 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) ↔ ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))))
33 rmspecsqrtnq 36488 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3433adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
35 nn0ssq 11672 . . . . . . . 8 0 ⊆ ℚ
36 xp1st 7089 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (1st𝑐) ∈ ℕ0)
3736ad2antrl 760 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℕ0)
3835, 37sseldi 3566 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℚ)
39 xp2nd 7090 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (2nd𝑐) ∈ ℤ)
4039ad2antrl 760 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℤ)
41 zq 11670 . . . . . . . 8 ((2nd𝑐) ∈ ℤ → (2nd𝑐) ∈ ℚ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℚ)
43 xp1st 7089 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (1st𝑑) ∈ ℕ0)
4443ad2antll 761 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℕ0)
4535, 44sseldi 3566 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℚ)
46 xp2nd 7090 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (2nd𝑑) ∈ ℤ)
4746ad2antll 761 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℤ)
48 zq 11670 . . . . . . . 8 ((2nd𝑑) ∈ ℤ → (2nd𝑑) ∈ ℚ)
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℚ)
50 qirropth 36491 . . . . . . 7 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((1st𝑐) ∈ ℚ ∧ (2nd𝑐) ∈ ℚ) ∧ ((1st𝑑) ∈ ℚ ∧ (2nd𝑑) ∈ ℚ)) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5134, 38, 42, 45, 49, 50syl122anc 1327 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5251biimpd 218 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
53 xpopth 7098 . . . . . 6 ((𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ)) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5453adantl 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5552, 54sylibd 228 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → 𝑐 = 𝑑))
5632, 55sylbid 229 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
5756ralrimivva 2954 . 2 (𝐴 ∈ (ℤ‘2) → ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
58 dff1o6 6431 . 2 ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ↔ ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ) ∧ ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ∧ ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑)))
594, 17, 57, 58syl3anbrc 1239 1 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cdif 3537  cop 4131  cmpt 4643   × cxp 5036  ran crn 5039   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cq 11664  cexp 12722  csqrt 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282
This theorem is referenced by:  rmxyelxp  36495  rmxyval  36498
  Copyright terms: Public domain W3C validator