Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qirropth Structured version   Unicode version

Theorem qirropth 29202
Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
qirropth  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  -> 
( ( B  +  ( A  x.  C
) )  =  ( D  +  ( A  x.  E ) )  <-> 
( B  =  D  /\  C  =  E ) ) )

Proof of Theorem qirropth
StepHypRef Expression
1 eldifn 3474 . . . . . . . 8  |-  ( A  e.  ( CC  \  QQ )  ->  -.  A  e.  QQ )
213ad2ant1 1009 . . . . . . 7  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  -.  A  e.  QQ )
32adantr 465 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  -.  A  e.  QQ )
4 simpll1 1027 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  A  e.  ( CC  \  QQ ) )
54eldifad 3335 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  A  e.  CC )
6 simp2r 1015 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  C  e.  QQ )
76ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  C  e.  QQ )
8 qcn 10959 . . . . . . . . . . . 12  |-  ( C  e.  QQ  ->  C  e.  CC )
97, 8syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  C  e.  CC )
10 simp3r 1017 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  E  e.  QQ )
1110ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  E  e.  QQ )
12 qcn 10959 . . . . . . . . . . . 12  |-  ( E  e.  QQ  ->  E  e.  CC )
1311, 12syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  E  e.  CC )
145, 9, 13subdid 9792 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( A  x.  ( C  -  E ) )  =  ( ( A  x.  C )  -  ( A  x.  E )
) )
15 qsubcl 10964 . . . . . . . . . . . . 13  |-  ( ( C  e.  QQ  /\  E  e.  QQ )  ->  ( C  -  E
)  e.  QQ )
167, 11, 15syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( C  -  E )  e.  QQ )
17 qcn 10959 . . . . . . . . . . . 12  |-  ( ( C  -  E )  e.  QQ  ->  ( C  -  E )  e.  CC )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( C  -  E )  e.  CC )
1918, 5mulcomd 9399 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( C  -  E
)  x.  A )  =  ( A  x.  ( C  -  E
) ) )
20 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) ) )
21 simp2l 1014 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  B  e.  QQ )
2221ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  B  e.  QQ )
23 qcn 10959 . . . . . . . . . . . . 13  |-  ( B  e.  QQ  ->  B  e.  CC )
2422, 23syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  B  e.  CC )
255, 9mulcld 9398 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( A  x.  C )  e.  CC )
26 simp3l 1016 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  D  e.  QQ )
2726ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  D  e.  QQ )
28 qcn 10959 . . . . . . . . . . . . 13  |-  ( D  e.  QQ  ->  D  e.  CC )
2927, 28syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  D  e.  CC )
305, 13mulcld 9398 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( A  x.  E )  e.  CC )
3124, 25, 29, 30addsubeq4d 9762 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) )  <->  ( D  -  B )  =  ( ( A  x.  C
)  -  ( A  x.  E ) ) ) )
3220, 31mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( D  -  B )  =  ( ( A  x.  C )  -  ( A  x.  E
) ) )
3314, 19, 323eqtr4d 2480 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( C  -  E
)  x.  A )  =  ( D  -  B ) )
34 qsubcl 10964 . . . . . . . . . . . 12  |-  ( ( D  e.  QQ  /\  B  e.  QQ )  ->  ( D  -  B
)  e.  QQ )
3527, 22, 34syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( D  -  B )  e.  QQ )
36 qcn 10959 . . . . . . . . . . 11  |-  ( ( D  -  B )  e.  QQ  ->  ( D  -  B )  e.  CC )
3735, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( D  -  B )  e.  CC )
38 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  -.  C  =  E )
39 subeq0 9627 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  E  e.  CC )  ->  ( ( C  -  E )  =  0  <-> 
C  =  E ) )
4039necon3abid 2636 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  E  e.  CC )  ->  ( ( C  -  E )  =/=  0  <->  -.  C  =  E ) )
419, 13, 40syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( C  -  E
)  =/=  0  <->  -.  C  =  E )
)
4238, 41mpbird 232 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( C  -  E )  =/=  0 )
4337, 18, 5, 42divmuld 10121 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( ( D  -  B )  /  ( C  -  E )
)  =  A  <->  ( ( C  -  E )  x.  A )  =  ( D  -  B ) ) )
4433, 43mpbird 232 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( D  -  B
)  /  ( C  -  E ) )  =  A )
45 qdivcl 10966 . . . . . . . . 9  |-  ( ( ( D  -  B
)  e.  QQ  /\  ( C  -  E
)  e.  QQ  /\  ( C  -  E
)  =/=  0 )  ->  ( ( D  -  B )  / 
( C  -  E
) )  e.  QQ )
4635, 16, 42, 45syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( D  -  B
)  /  ( C  -  E ) )  e.  QQ )
4744, 46eqeltrrd 2513 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  A  e.  QQ )
4847ex 434 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( -.  C  =  E  ->  A  e.  QQ ) )
493, 48mt3d 125 . . . . 5  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  C  =  E )
50 simpl2l 1041 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  B  e.  QQ )
5150, 23syl 16 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  B  e.  CC )
5251adantr 465 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  B  e.  CC )
53 simpl3l 1043 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  D  e.  QQ )
5453, 28syl 16 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  D  e.  CC )
5554adantr 465 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  D  e.  CC )
56 simpl1 991 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  A  e.  ( CC  \  QQ ) )
5756eldifad 3335 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  A  e.  CC )
58 simpl3r 1044 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  E  e.  QQ )
5958, 12syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  E  e.  CC )
6057, 59mulcld 9398 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( A  x.  E )  e.  CC )
6160adantr 465 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( A  x.  E )  e.  CC )
62 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  C  =  E )
6362eqcomd 2443 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  E  =  C )
6463oveq2d 6102 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( A  x.  E )  =  ( A  x.  C ) )
6564oveq2d 6102 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( B  +  ( A  x.  E ) )  =  ( B  +  ( A  x.  C ) ) )
66 simplr 754 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) ) )
6765, 66eqtrd 2470 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( B  +  ( A  x.  E ) )  =  ( D  +  ( A  x.  E ) ) )
6852, 55, 61, 67addcan2ad 9567 . . . . . 6  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  B  =  D )
6968ex 434 . . . . 5  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( C  =  E  ->  B  =  D ) )
7049, 69jcai 536 . . . 4  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( C  =  E  /\  B  =  D ) )
7170ancomd 451 . . 3  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( B  =  D  /\  C  =  E ) )
7271ex 434 . 2  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  -> 
( ( B  +  ( A  x.  C
) )  =  ( D  +  ( A  x.  E ) )  ->  ( B  =  D  /\  C  =  E ) ) )
73 id 22 . . 3  |-  ( B  =  D  ->  B  =  D )
74 oveq2 6094 . . 3  |-  ( C  =  E  ->  ( A  x.  C )  =  ( A  x.  E ) )
7573, 74oveqan12d 6105 . 2  |-  ( ( B  =  D  /\  C  =  E )  ->  ( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) ) )
7672, 75impbid1 203 1  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  -> 
( ( B  +  ( A  x.  C
) )  =  ( D  +  ( A  x.  E ) )  <-> 
( B  =  D  /\  C  =  E ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601    \ cdif 3320  (class class class)co 6086   CCcc 9272   0cc0 9274    + caddc 9277    x. cmul 9279    - cmin 9587    / cdiv 9985   QQcq 10945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-n0 10572  df-z 10639  df-q 10946
This theorem is referenced by:  rmxypairf1o  29205  rmxycomplete  29211  rmxyneg  29214  rmxyadd  29215  rmxy1  29216  rmxy0  29217  jm2.22  29297
  Copyright terms: Public domain W3C validator