MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcn Structured version   Visualization version   GIF version

Theorem ptcn 21240
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptcn.2 𝐾 = (∏t𝐹)
ptcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcn.4 (𝜑𝐼𝑉)
ptcn.5 (𝜑𝐹:𝐼⟶Top)
ptcn.6 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
Assertion
Ref Expression
ptcn (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝑋,𝑥   𝑥,𝐾   𝑘,𝑉,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑘)

Proof of Theorem ptcn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ptcn.3 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcn.5 . . . . . . . . . . . 12 (𝜑𝐹:𝐼⟶Top)
43ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 eqid 2610 . . . . . . . . . . . 12 (𝐹𝑘) = (𝐹𝑘)
65toptopon 20548 . . . . . . . . . . 11 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
74, 6sylib 207 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
8 ptcn.6 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
9 cnf2 20863 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘))) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
102, 7, 8, 9syl3anc 1318 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
11 eqid 2610 . . . . . . . . . 10 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1211fmpt 6289 . . . . . . . . 9 (∀𝑥𝑋 𝐴 (𝐹𝑘) ↔ (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
1310, 12sylibr 223 . . . . . . . 8 ((𝜑𝑘𝐼) → ∀𝑥𝑋 𝐴 (𝐹𝑘))
1413r19.21bi 2916 . . . . . . 7 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1514an32s 842 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1615ralrimiva 2949 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
17 ptcn.4 . . . . . . 7 (𝜑𝐼𝑉)
1817adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐼𝑉)
19 mptelixpg 7831 . . . . . 6 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
2018, 19syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
2116, 20mpbird 246 . . . 4 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
22 ptcn.2 . . . . . . 7 𝐾 = (∏t𝐹)
2322ptuni 21207 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2417, 3, 23syl2anc 691 . . . . 5 (𝜑X𝑘𝐼 (𝐹𝑘) = 𝐾)
2524adantr 480 . . . 4 ((𝜑𝑥𝑋) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2621, 25eleqtrd 2690 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ 𝐾)
27 eqid 2610 . . 3 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = (𝑥𝑋 ↦ (𝑘𝐼𝐴))
2826, 27fmptd 6292 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾)
291adantr 480 . . . 4 ((𝜑𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3017adantr 480 . . . 4 ((𝜑𝑧𝑋) → 𝐼𝑉)
313adantr 480 . . . 4 ((𝜑𝑧𝑋) → 𝐹:𝐼⟶Top)
32 simpr 476 . . . 4 ((𝜑𝑧𝑋) → 𝑧𝑋)
338adantlr 747 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
34 simplr 788 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧𝑋)
35 toponuni 20542 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
361, 35syl 17 . . . . . . 7 (𝜑𝑋 = 𝐽)
3736ad2antrr 758 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑋 = 𝐽)
3834, 37eleqtrd 2690 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧 𝐽)
39 eqid 2610 . . . . . 6 𝐽 = 𝐽
4039cncnpi 20892 . . . . 5 (((𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑧 𝐽) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
4133, 38, 40syl2anc 691 . . . 4 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
4222, 29, 30, 31, 32, 41ptcnp 21235 . . 3 ((𝜑𝑧𝑋) → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
4342ralrimiva 2949 . 2 (𝜑 → ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
44 pttop 21195 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → (∏t𝐹) ∈ Top)
4517, 3, 44syl2anc 691 . . . . 5 (𝜑 → (∏t𝐹) ∈ Top)
4622, 45syl5eqel 2692 . . . 4 (𝜑𝐾 ∈ Top)
47 eqid 2610 . . . . 5 𝐾 = 𝐾
4847toptopon 20548 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
4946, 48sylib 207 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
50 cncnp 20894 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
511, 49, 50syl2anc 691 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
5228, 43, 51mpbir2and 959 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896   cuni 4372  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Xcixp 7794  tcpt 15922  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   CnP ccnp 20839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cnp 20842
This theorem is referenced by:  pt1hmeo  21419  ptunhmeo  21421  symgtgp  21715  prdstmdd  21737  prdstgpd  21738  ptpcon  30469  broucube  32613
  Copyright terms: Public domain W3C validator