MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcn Structured version   Visualization version   Unicode version

Theorem ptcn 20719
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptcn.2  |-  K  =  ( Xt_ `  F
)
ptcn.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
ptcn.4  |-  ( ph  ->  I  e.  V )
ptcn.5  |-  ( ph  ->  F : I --> Top )
ptcn.6  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k ) ) )
Assertion
Ref Expression
ptcn  |-  ( ph  ->  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K
) )
Distinct variable groups:    x, k, F    k, I, x    k, J    ph, k, x    k, X, x    x, K    k, V, x
Allowed substitution hints:    A( x, k)    J( x)    K( k)

Proof of Theorem ptcn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ptcn.3 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  J  e.  (TopOn `  X )
)
3 ptcn.5 . . . . . . . . . . . 12  |-  ( ph  ->  F : I --> Top )
43ffvelrnda 6037 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  ( F `  k )  e.  Top )
5 eqid 2471 . . . . . . . . . . . 12  |-  U. ( F `  k )  =  U. ( F `  k )
65toptopon 20025 . . . . . . . . . . 11  |-  ( ( F `  k )  e.  Top  <->  ( F `  k )  e.  (TopOn `  U. ( F `  k ) ) )
74, 6sylib 201 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  ( F `  k )  e.  (TopOn `  U. ( F `
 k ) ) )
8 ptcn.6 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k ) ) )
9 cnf2 20342 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  ( F `  k )  e.  (TopOn `  U. ( F `
 k ) )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k )
) )  ->  (
x  e.  X  |->  A ) : X --> U. ( F `  k )
)
102, 7, 8, 9syl3anc 1292 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  X  |->  A ) : X --> U. ( F `  k )
)
11 eqid 2471 . . . . . . . . . 10  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1211fmpt 6058 . . . . . . . . 9  |-  ( A. x  e.  X  A  e.  U. ( F `  k )  <->  ( x  e.  X  |->  A ) : X --> U. ( F `  k )
)
1310, 12sylibr 217 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  A. x  e.  X  A  e.  U. ( F `  k
) )
1413r19.21bi 2776 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  I )  /\  x  e.  X )  ->  A  e.  U. ( F `  k ) )
1514an32s 821 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  I )  ->  A  e.  U. ( F `  k ) )
1615ralrimiva 2809 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. k  e.  I  A  e.  U. ( F `  k
) )
17 ptcn.4 . . . . . . 7  |-  ( ph  ->  I  e.  V )
1817adantr 472 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  I  e.  V )
19 mptelixpg 7577 . . . . . 6  |-  ( I  e.  V  ->  (
( k  e.  I  |->  A )  e.  X_ k  e.  I  U. ( F `  k )  <->  A. k  e.  I  A  e.  U. ( F `  k )
) )
2018, 19syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( k  e.  I  |->  A )  e.  X_ k  e.  I  U. ( F `  k )  <->  A. k  e.  I  A  e.  U. ( F `  k )
) )
2116, 20mpbird 240 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  I  |->  A )  e.  X_ k  e.  I  U. ( F `  k )
)
22 ptcn.2 . . . . . . 7  |-  K  =  ( Xt_ `  F
)
2322ptuni 20686 . . . . . 6  |-  ( ( I  e.  V  /\  F : I --> Top )  -> 
X_ k  e.  I  U. ( F `  k
)  =  U. K
)
2417, 3, 23syl2anc 673 . . . . 5  |-  ( ph  -> 
X_ k  e.  I  U. ( F `  k
)  =  U. K
)
2524adantr 472 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X_ k  e.  I  U. ( F `  k )  =  U. K )
2621, 25eleqtrd 2551 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  I  |->  A )  e.  U. K
)
27 eqid 2471 . . 3  |-  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  =  ( x  e.  X  |->  ( k  e.  I  |->  A ) )
2826, 27fmptd 6061 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( k  e.  I  |->  A ) ) : X --> U. K )
291adantr 472 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  J  e.  (TopOn `  X )
)
3017adantr 472 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  I  e.  V )
313adantr 472 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  F : I --> Top )
32 simpr 468 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  z  e.  X )
338adantlr 729 . . . . 5  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k ) ) )
34 simplr 770 . . . . . 6  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  z  e.  X )
35 toponuni 20019 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
361, 35syl 17 . . . . . . 7  |-  ( ph  ->  X  =  U. J
)
3736ad2antrr 740 . . . . . 6  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  X  =  U. J )
3834, 37eleqtrd 2551 . . . . 5  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  z  e.  U. J )
39 eqid 2471 . . . . . 6  |-  U. J  =  U. J
4039cncnpi 20371 . . . . 5  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  ( F `
 k ) )  /\  z  e.  U. J )  ->  (
x  e.  X  |->  A )  e.  ( ( J  CnP  ( F `
 k ) ) `
 z ) )
4133, 38, 40syl2anc 673 . . . 4  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( ( J  CnP  ( F `
 k ) ) `
 z ) )
4222, 29, 30, 31, 32, 41ptcnp 20714 . . 3  |-  ( (
ph  /\  z  e.  X )  ->  (
x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K
) `  z )
)
4342ralrimiva 2809 . 2  |-  ( ph  ->  A. z  e.  X  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K ) `  z ) )
44 pttop 20674 . . . . . 6  |-  ( ( I  e.  V  /\  F : I --> Top )  ->  ( Xt_ `  F
)  e.  Top )
4517, 3, 44syl2anc 673 . . . . 5  |-  ( ph  ->  ( Xt_ `  F
)  e.  Top )
4622, 45syl5eqel 2553 . . . 4  |-  ( ph  ->  K  e.  Top )
47 eqid 2471 . . . . 5  |-  U. K  =  U. K
4847toptopon 20025 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
4946, 48sylib 201 . . 3  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
50 cncnp 20373 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K ) )  ->  ( (
x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K )  <-> 
( ( x  e.  X  |->  ( k  e.  I  |->  A ) ) : X --> U. K  /\  A. z  e.  X  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K ) `  z ) ) ) )
511, 49, 50syl2anc 673 . 2  |-  ( ph  ->  ( ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K )  <->  ( (
x  e.  X  |->  ( k  e.  I  |->  A ) ) : X --> U. K  /\  A. z  e.  X  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K ) `
 z ) ) ) )
5228, 43, 51mpbir2and 936 1  |-  ( ph  ->  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   U.cuni 4190    |-> cmpt 4454   -->wf 5585   ` cfv 5589  (class class class)co 6308   X_cixp 7540   Xt_cpt 15415   Topctop 19994  TopOnctopon 19995    Cn ccn 20317    CnP ccnp 20318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-fin 7591  df-fi 7943  df-topgen 15420  df-pt 15421  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320  df-cnp 20321
This theorem is referenced by:  pt1hmeo  20898  ptunhmeo  20900  symgtgp  21194  prdstmdd  21216  prdstgpd  21217  ptpcon  30028  broucube  32038
  Copyright terms: Public domain W3C validator