MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunhmeo Structured version   Visualization version   GIF version

Theorem ptunhmeo 21421
Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of (𝐴𝐵) · (𝐴𝐶) = 𝐴↑(𝐵 + 𝐶). (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
ptunhmeo.x 𝑋 = 𝐾
ptunhmeo.y 𝑌 = 𝐿
ptunhmeo.j 𝐽 = (∏t𝐹)
ptunhmeo.k 𝐾 = (∏t‘(𝐹𝐴))
ptunhmeo.l 𝐿 = (∏t‘(𝐹𝐵))
ptunhmeo.g 𝐺 = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
ptunhmeo.c (𝜑𝐶𝑉)
ptunhmeo.f (𝜑𝐹:𝐶⟶Top)
ptunhmeo.u (𝜑𝐶 = (𝐴𝐵))
ptunhmeo.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
ptunhmeo (𝜑𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ptunhmeo
Dummy variables 𝑓 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptunhmeo.g . . . . 5 𝐺 = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
2 vex 3176 . . . . . . . 8 𝑥 ∈ V
3 vex 3176 . . . . . . . 8 𝑦 ∈ V
42, 3op1std 7069 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
52, 3op2ndd 7070 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
64, 5uneq12d 3730 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
76mpt2mpt 6650 . . . . 5 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥𝑋, 𝑦𝑌 ↦ (𝑥𝑦))
81, 7eqtr4i 2635 . . . 4 𝐺 = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧) ∪ (2nd𝑧)))
9 xp1st 7089 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
109adantl 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) ∈ 𝑋)
11 ixpeq2 7808 . . . . . . . . . . . . 13 (∀𝑛𝐴 ((𝐹𝐴)‘𝑛) = (𝐹𝑛) → X𝑛𝐴 ((𝐹𝐴)‘𝑛) = X𝑛𝐴 (𝐹𝑛))
12 fvres 6117 . . . . . . . . . . . . . 14 (𝑛𝐴 → ((𝐹𝐴)‘𝑛) = (𝐹𝑛))
1312unieqd 4382 . . . . . . . . . . . . 13 (𝑛𝐴 ((𝐹𝐴)‘𝑛) = (𝐹𝑛))
1411, 13mprg 2910 . . . . . . . . . . . 12 X𝑛𝐴 ((𝐹𝐴)‘𝑛) = X𝑛𝐴 (𝐹𝑛)
15 ptunhmeo.c . . . . . . . . . . . . . 14 (𝜑𝐶𝑉)
16 ssun1 3738 . . . . . . . . . . . . . . 15 𝐴 ⊆ (𝐴𝐵)
17 ptunhmeo.u . . . . . . . . . . . . . . 15 (𝜑𝐶 = (𝐴𝐵))
1816, 17syl5sseqr 3617 . . . . . . . . . . . . . 14 (𝜑𝐴𝐶)
1915, 18ssexd 4733 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ V)
20 ptunhmeo.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐶⟶Top)
2120, 18fssresd 5984 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐴):𝐴⟶Top)
22 ptunhmeo.k . . . . . . . . . . . . . 14 𝐾 = (∏t‘(𝐹𝐴))
2322ptuni 21207 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top) → X𝑛𝐴 ((𝐹𝐴)‘𝑛) = 𝐾)
2419, 21, 23syl2anc 691 . . . . . . . . . . . 12 (𝜑X𝑛𝐴 ((𝐹𝐴)‘𝑛) = 𝐾)
2514, 24syl5eqr 2658 . . . . . . . . . . 11 (𝜑X𝑛𝐴 (𝐹𝑛) = 𝐾)
26 ptunhmeo.x . . . . . . . . . . 11 𝑋 = 𝐾
2725, 26syl6eqr 2662 . . . . . . . . . 10 (𝜑X𝑛𝐴 (𝐹𝑛) = 𝑋)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
2910, 28eleqtrrd 2691 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) ∈ X𝑛𝐴 (𝐹𝑛))
30 xp2nd 7090 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
3130adantl 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) ∈ 𝑌)
3217eqcomd 2616 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = 𝐶)
33 ptunhmeo.i . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
34 uneqdifeq 4009 . . . . . . . . . . . . . 14 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
3518, 33, 34syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
3632, 35mpbid 221 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐴) = 𝐵)
3736ixpeq1d 7806 . . . . . . . . . . 11 (𝜑X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) = X𝑛𝐵 (𝐹𝑛))
38 ixpeq2 7808 . . . . . . . . . . . . . 14 (∀𝑛𝐵 ((𝐹𝐵)‘𝑛) = (𝐹𝑛) → X𝑛𝐵 ((𝐹𝐵)‘𝑛) = X𝑛𝐵 (𝐹𝑛))
39 fvres 6117 . . . . . . . . . . . . . . 15 (𝑛𝐵 → ((𝐹𝐵)‘𝑛) = (𝐹𝑛))
4039unieqd 4382 . . . . . . . . . . . . . 14 (𝑛𝐵 ((𝐹𝐵)‘𝑛) = (𝐹𝑛))
4138, 40mprg 2910 . . . . . . . . . . . . 13 X𝑛𝐵 ((𝐹𝐵)‘𝑛) = X𝑛𝐵 (𝐹𝑛)
42 ssun2 3739 . . . . . . . . . . . . . . . 16 𝐵 ⊆ (𝐴𝐵)
4342, 17syl5sseqr 3617 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
4415, 43ssexd 4733 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ V)
4520, 43fssresd 5984 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐵):𝐵⟶Top)
46 ptunhmeo.l . . . . . . . . . . . . . . 15 𝐿 = (∏t‘(𝐹𝐵))
4746ptuni 21207 . . . . . . . . . . . . . 14 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑛𝐵 ((𝐹𝐵)‘𝑛) = 𝐿)
4844, 45, 47syl2anc 691 . . . . . . . . . . . . 13 (𝜑X𝑛𝐵 ((𝐹𝐵)‘𝑛) = 𝐿)
4941, 48syl5eqr 2658 . . . . . . . . . . . 12 (𝜑X𝑛𝐵 (𝐹𝑛) = 𝐿)
50 ptunhmeo.y . . . . . . . . . . . 12 𝑌 = 𝐿
5149, 50syl6eqr 2662 . . . . . . . . . . 11 (𝜑X𝑛𝐵 (𝐹𝑛) = 𝑌)
5237, 51eqtrd 2644 . . . . . . . . . 10 (𝜑X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) = 𝑌)
5352adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) = 𝑌)
5431, 53eleqtrrd 2691 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) ∈ X𝑛 ∈ (𝐶𝐴) (𝐹𝑛))
5518adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → 𝐴𝐶)
56 undifixp 7830 . . . . . . . 8 (((1st𝑧) ∈ X𝑛𝐴 (𝐹𝑛) ∧ (2nd𝑧) ∈ X𝑛 ∈ (𝐶𝐴) (𝐹𝑛) ∧ 𝐴𝐶) → ((1st𝑧) ∪ (2nd𝑧)) ∈ X𝑛𝐶 (𝐹𝑛))
5729, 54, 55, 56syl3anc 1318 . . . . . . 7 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → ((1st𝑧) ∪ (2nd𝑧)) ∈ X𝑛𝐶 (𝐹𝑛))
58 ixpfn 7800 . . . . . . 7 (((1st𝑧) ∪ (2nd𝑧)) ∈ X𝑛𝐶 (𝐹𝑛) → ((1st𝑧) ∪ (2nd𝑧)) Fn 𝐶)
5957, 58syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → ((1st𝑧) ∪ (2nd𝑧)) Fn 𝐶)
60 dffn5 6151 . . . . . 6 (((1st𝑧) ∪ (2nd𝑧)) Fn 𝐶 ↔ ((1st𝑧) ∪ (2nd𝑧)) = (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)))
6159, 60sylib 207 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → ((1st𝑧) ∪ (2nd𝑧)) = (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)))
6261mpteq2dva 4672 . . . 4 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘))))
638, 62syl5eq 2656 . . 3 (𝜑𝐺 = (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘))))
64 ptunhmeo.j . . . 4 𝐽 = (∏t𝐹)
65 pttop 21195 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top) → (∏t‘(𝐹𝐴)) ∈ Top)
6619, 21, 65syl2anc 691 . . . . . . 7 (𝜑 → (∏t‘(𝐹𝐴)) ∈ Top)
6722, 66syl5eqel 2692 . . . . . 6 (𝜑𝐾 ∈ Top)
6826toptopon 20548 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑋))
6967, 68sylib 207 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑋))
70 pttop 21195 . . . . . . . 8 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
7144, 45, 70syl2anc 691 . . . . . . 7 (𝜑 → (∏t‘(𝐹𝐵)) ∈ Top)
7246, 71syl5eqel 2692 . . . . . 6 (𝜑𝐿 ∈ Top)
7350toptopon 20548 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘𝑌))
7472, 73sylib 207 . . . . 5 (𝜑𝐿 ∈ (TopOn‘𝑌))
75 txtopon 21204 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
7669, 74, 75syl2anc 691 . . . 4 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
7717eleq2d 2673 . . . . . . 7 (𝜑 → (𝑘𝐶𝑘 ∈ (𝐴𝐵)))
7877biimpa 500 . . . . . 6 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐴𝐵))
79 elun 3715 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
8078, 79sylib 207 . . . . 5 ((𝜑𝑘𝐶) → (𝑘𝐴𝑘𝐵))
81 ixpfn 7800 . . . . . . . . . . 11 ((1st𝑧) ∈ X𝑛𝐴 (𝐹𝑛) → (1st𝑧) Fn 𝐴)
8229, 81syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) Fn 𝐴)
8382adantlr 747 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) Fn 𝐴)
8451adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → X𝑛𝐵 (𝐹𝑛) = 𝑌)
8531, 84eleqtrrd 2691 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) ∈ X𝑛𝐵 (𝐹𝑛))
86 ixpfn 7800 . . . . . . . . . . 11 ((2nd𝑧) ∈ X𝑛𝐵 (𝐹𝑛) → (2nd𝑧) Fn 𝐵)
8785, 86syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) Fn 𝐵)
8887adantlr 747 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) Fn 𝐵)
8933ad2antrr 758 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (𝐴𝐵) = ∅)
90 simplr 788 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝑘𝐴)
91 fvun1 6179 . . . . . . . . 9 (((1st𝑧) Fn 𝐴 ∧ (2nd𝑧) Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑘𝐴)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((1st𝑧)‘𝑘))
9283, 88, 89, 90, 91syl112anc 1322 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((1st𝑧)‘𝑘))
9392mpteq2dva 4672 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧)‘𝑘)))
9476adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
954mpt2mpt 6650 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) = (𝑥𝑋, 𝑦𝑌𝑥)
9669adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘𝑋))
9774adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐿 ∈ (TopOn‘𝑌))
9896, 97cnmpt1st 21281 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐾 ×t 𝐿) Cn 𝐾))
9995, 98syl5eqel 2692 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) ∈ ((𝐾 ×t 𝐿) Cn 𝐾))
10019adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐴 ∈ V)
10121adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝐴):𝐴⟶Top)
102 simpr 476 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝑘𝐴)
10326, 22ptpjcn 21224 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝐹𝐴):𝐴⟶Top ∧ 𝑘𝐴) → (𝑓𝑋 ↦ (𝑓𝑘)) ∈ (𝐾 Cn ((𝐹𝐴)‘𝑘)))
104100, 101, 102, 103syl3anc 1318 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑓𝑋 ↦ (𝑓𝑘)) ∈ (𝐾 Cn ((𝐹𝐴)‘𝑘)))
105 fvres 6117 . . . . . . . . . . 11 (𝑘𝐴 → ((𝐹𝐴)‘𝑘) = (𝐹𝑘))
106105adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝐴)‘𝑘) = (𝐹𝑘))
107106oveq2d 6565 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐾 Cn ((𝐹𝐴)‘𝑘)) = (𝐾 Cn (𝐹𝑘)))
108104, 107eleqtrd 2690 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑓𝑋 ↦ (𝑓𝑘)) ∈ (𝐾 Cn (𝐹𝑘)))
109 fveq1 6102 . . . . . . . 8 (𝑓 = (1st𝑧) → (𝑓𝑘) = ((1st𝑧)‘𝑘))
11094, 99, 96, 108, 109cnmpt11 21276 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st𝑧)‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
11193, 110eqeltrd 2688 . . . . . 6 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
11282adantlr 747 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (1st𝑧) Fn 𝐴)
11387adantlr 747 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (2nd𝑧) Fn 𝐵)
11433ad2antrr 758 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (𝐴𝐵) = ∅)
115 simplr 788 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → 𝑘𝐵)
116 fvun2 6180 . . . . . . . . 9 (((1st𝑧) Fn 𝐴 ∧ (2nd𝑧) Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑘𝐵)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((2nd𝑧)‘𝑘))
117112, 113, 114, 115, 116syl112anc 1322 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((1st𝑧) ∪ (2nd𝑧))‘𝑘) = ((2nd𝑧)‘𝑘))
118117mpteq2dva 4672 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd𝑧)‘𝑘)))
11976adantr 480 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
1205mpt2mpt 6650 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧)) = (𝑥𝑋, 𝑦𝑌𝑦)
12169adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝐾 ∈ (TopOn‘𝑋))
12274adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝐿 ∈ (TopOn‘𝑌))
123121, 122cnmpt2nd 21282 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐾 ×t 𝐿) Cn 𝐿))
124120, 123syl5eqel 2692 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧)) ∈ ((𝐾 ×t 𝐿) Cn 𝐿))
12544adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝐵 ∈ V)
12645adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐵) → (𝐹𝐵):𝐵⟶Top)
127 simpr 476 . . . . . . . . . 10 ((𝜑𝑘𝐵) → 𝑘𝐵)
12850, 46ptpjcn 21224 . . . . . . . . . 10 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top ∧ 𝑘𝐵) → (𝑓𝑌 ↦ (𝑓𝑘)) ∈ (𝐿 Cn ((𝐹𝐵)‘𝑘)))
129125, 126, 127, 128syl3anc 1318 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑓𝑌 ↦ (𝑓𝑘)) ∈ (𝐿 Cn ((𝐹𝐵)‘𝑘)))
130 fvres 6117 . . . . . . . . . . 11 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
131130adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝐵) → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
132131oveq2d 6565 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝐿 Cn ((𝐹𝐵)‘𝑘)) = (𝐿 Cn (𝐹𝑘)))
133129, 132eleqtrd 2690 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑓𝑌 ↦ (𝑓𝑘)) ∈ (𝐿 Cn (𝐹𝑘)))
134 fveq1 6102 . . . . . . . 8 (𝑓 = (2nd𝑧) → (𝑓𝑘) = ((2nd𝑧)‘𝑘))
135119, 124, 122, 133, 134cnmpt11 21276 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd𝑧)‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
136118, 135eqeltrd 2688 . . . . . 6 ((𝜑𝑘𝐵) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
137111, 136jaodan 822 . . . . 5 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
13880, 137syldan 486 . . . 4 ((𝜑𝑘𝐶) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘)) ∈ ((𝐾 ×t 𝐿) Cn (𝐹𝑘)))
13964, 76, 15, 20, 138ptcn 21240 . . 3 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ (𝑘𝐶 ↦ (((1st𝑧) ∪ (2nd𝑧))‘𝑘))) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
14063, 139eqeltrd 2688 . 2 (𝜑𝐺 ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
14126, 50, 64, 22, 46, 1, 15, 20, 17, 33ptuncnv 21420 . . 3 (𝜑𝐺 = (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩))
142 pttop 21195 . . . . . . 7 ((𝐶𝑉𝐹:𝐶⟶Top) → (∏t𝐹) ∈ Top)
14315, 20, 142syl2anc 691 . . . . . 6 (𝜑 → (∏t𝐹) ∈ Top)
14464, 143syl5eqel 2692 . . . . 5 (𝜑𝐽 ∈ Top)
145 eqid 2610 . . . . . 6 𝐽 = 𝐽
146145toptopon 20548 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
147144, 146sylib 207 . . . 4 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
148145, 64, 22ptrescn 21252 . . . . 5 ((𝐶𝑉𝐹:𝐶⟶Top ∧ 𝐴𝐶) → (𝑧 𝐽 ↦ (𝑧𝐴)) ∈ (𝐽 Cn 𝐾))
14915, 20, 18, 148syl3anc 1318 . . . 4 (𝜑 → (𝑧 𝐽 ↦ (𝑧𝐴)) ∈ (𝐽 Cn 𝐾))
150145, 64, 46ptrescn 21252 . . . . 5 ((𝐶𝑉𝐹:𝐶⟶Top ∧ 𝐵𝐶) → (𝑧 𝐽 ↦ (𝑧𝐵)) ∈ (𝐽 Cn 𝐿))
15115, 20, 43, 150syl3anc 1318 . . . 4 (𝜑 → (𝑧 𝐽 ↦ (𝑧𝐵)) ∈ (𝐽 Cn 𝐿))
152147, 149, 151cnmpt1t 21278 . . 3 (𝜑 → (𝑧 𝐽 ↦ ⟨(𝑧𝐴), (𝑧𝐵)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
153141, 152eqeltrd 2688 . 2 (𝜑𝐺 ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
154 ishmeo 21372 . 2 (𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽) ↔ (𝐺 ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ∧ 𝐺 ∈ (𝐽 Cn (𝐾 ×t 𝐿))))
155140, 153, 154sylanbrc 695 1 (𝜑𝐺 ∈ ((𝐾 ×t 𝐿)Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  cop 4131   cuni 4372  cmpt 4643   × cxp 5036  ccnv 5037  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Xcixp 7794  tcpt 15922  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  Homeochmeo 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368
This theorem is referenced by:  xpstopnlem1  21422  ptcmpfi  21426
  Copyright terms: Public domain W3C validator