MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfval Structured version   Visualization version   GIF version

Theorem pmtrprfval 17730
Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfval (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Distinct variable group:   𝑧,𝑝

Proof of Theorem pmtrprfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 prex 4836 . . 3 {1, 2} ∈ V
2 eqid 2610 . . . 4 (pmTrsp‘{1, 2}) = (pmTrsp‘{1, 2})
32pmtrfval 17693 . . 3 ({1, 2} ∈ V → (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2𝑜} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2𝑜} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 1ex 9914 . . . . 5 1 ∈ V
6 2nn0 11186 . . . . 5 2 ∈ ℕ0
7 1ne2 11117 . . . . 5 1 ≠ 2
8 pr2pwpr 13116 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2) → {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2𝑜} = {{1, 2}})
95, 6, 7, 8mp3an 1416 . . . 4 {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2𝑜} = {{1, 2}}
10 eqid 2610 . . . 4 (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))
119, 10mpteq12i 4670 . . 3 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2𝑜} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
12 elsni 4142 . . . . . 6 (𝑝 ∈ {{1, 2}} → 𝑝 = {1, 2})
13 eleq2 2677 . . . . . . . . 9 (𝑝 = {1, 2} → (𝑧𝑝𝑧 ∈ {1, 2}))
1413biimpar 501 . . . . . . . 8 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → 𝑧𝑝)
1514iftrued 4044 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = (𝑝 ∖ {𝑧}))
16 elpri 4145 . . . . . . . . 9 (𝑧 ∈ {1, 2} → (𝑧 = 1 ∨ 𝑧 = 2))
17 2ex 10969 . . . . . . . . . . . . 13 2 ∈ V
1817unisn 4387 . . . . . . . . . . . 12 {2} = 2
19 simpr 476 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
20 sneq 4135 . . . . . . . . . . . . . . . 16 (𝑧 = 1 → {𝑧} = {1})
2120adantr 480 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → {𝑧} = {1})
2219, 21difeq12d 3691 . . . . . . . . . . . . . 14 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {1}))
23 difprsn1 4271 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {1}) = {2})
247, 23ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {1}) = {2}
2522, 24syl6eq 2660 . . . . . . . . . . . . 13 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
2625unieqd 4382 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
27 iftrue 4042 . . . . . . . . . . . . 13 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
2827adantr 480 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 2)
2918, 26, 283eqtr4a 2670 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
3029ex 449 . . . . . . . . . 10 (𝑧 = 1 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
315unisn 4387 . . . . . . . . . . . 12 {1} = 1
32 simpr 476 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
33 sneq 4135 . . . . . . . . . . . . . . . 16 (𝑧 = 2 → {𝑧} = {2})
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → {𝑧} = {2})
3532, 34difeq12d 3691 . . . . . . . . . . . . . 14 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {2}))
36 difprsn2 4272 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {2}) = {1})
377, 36ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {2}) = {1}
3835, 37syl6eq 2660 . . . . . . . . . . . . 13 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
3938unieqd 4382 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
407nesymi 2839 . . . . . . . . . . . . . . 15 ¬ 2 = 1
41 eqeq1 2614 . . . . . . . . . . . . . . 15 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
4240, 41mtbiri 316 . . . . . . . . . . . . . 14 (𝑧 = 2 → ¬ 𝑧 = 1)
4342iffalsed 4047 . . . . . . . . . . . . 13 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
4443adantr 480 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 1)
4531, 39, 443eqtr4a 2670 . . . . . . . . . . 11 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4645ex 449 . . . . . . . . . 10 (𝑧 = 2 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4730, 46jaoi 393 . . . . . . . . 9 ((𝑧 = 1 ∨ 𝑧 = 2) → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4816, 47syl 17 . . . . . . . 8 (𝑧 ∈ {1, 2} → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4948impcom 445 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
5015, 49eqtrd 2644 . . . . . 6 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5112, 50sylan 487 . . . . 5 ((𝑝 ∈ {{1, 2}} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5251mpteq2dva 4672 . . . 4 (𝑝 ∈ {{1, 2}} → (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5352mpteq2ia 4668 . . 3 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5411, 53eqtri 2632 . 2 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2𝑜} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
554, 54eqtri 2632 1 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cdif 3537  ifcif 4036  𝒫 cpw 4108  {csn 4125  {cpr 4127   cuni 4372   class class class wbr 4583  cmpt 4643  cfv 5804  2𝑜c2o 7441  cen 7838  1c1 9816  2c2 10947  0cn0 11169  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-pmtr 17685
This theorem is referenced by:  pmtrprfvalrn  17731
  Copyright terms: Public domain W3C validator