MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfrn Structured version   Visualization version   GIF version

Theorem pmtrfrn 17701
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom (𝐹 ∖ I )
Assertion
Ref Expression
pmtrfrn (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))

Proof of Theorem pmtrfrn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3878 . . . 4 ¬ 𝐹 ∈ ∅
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 pmtrrn.t . . . . . . . . 9 𝑇 = (pmTrsp‘𝐷)
4 fvprc 6097 . . . . . . . . 9 𝐷 ∈ V → (pmTrsp‘𝐷) = ∅)
53, 4syl5eq 2656 . . . . . . . 8 𝐷 ∈ V → 𝑇 = ∅)
65rneqd 5274 . . . . . . 7 𝐷 ∈ V → ran 𝑇 = ran ∅)
7 rn0 5298 . . . . . . 7 ran ∅ = ∅
86, 7syl6eq 2660 . . . . . 6 𝐷 ∈ V → ran 𝑇 = ∅)
92, 8syl5eq 2656 . . . . 5 𝐷 ∈ V → 𝑅 = ∅)
109eleq2d 2673 . . . 4 𝐷 ∈ V → (𝐹𝑅𝐹 ∈ ∅))
111, 10mtbiri 316 . . 3 𝐷 ∈ V → ¬ 𝐹𝑅)
1211con4i 112 . 2 (𝐹𝑅𝐷 ∈ V)
13 mptexg 6389 . . . . . . . 8 (𝐷 ∈ V → (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V)
1413ralrimivw 2950 . . . . . . 7 (𝐷 ∈ V → ∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V)
15 eqid 2610 . . . . . . . 8 (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)))
1615fnmpt 5933 . . . . . . 7 (∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
1714, 16syl 17 . . . . . 6 (𝐷 ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
183pmtrfval 17693 . . . . . . 7 (𝐷 ∈ V → 𝑇 = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))))
1918fneq1d 5895 . . . . . 6 (𝐷 ∈ V → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↔ (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜}))
2017, 19mpbird 246 . . . . 5 (𝐷 ∈ V → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
21 fvelrnb 6153 . . . . 5 (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹))
2220, 21syl 17 . . . 4 (𝐷 ∈ V → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹))
232eleq2i 2680 . . . 4 (𝐹𝑅𝐹 ∈ ran 𝑇)
24 breq1 4586 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≈ 2𝑜𝑦 ≈ 2𝑜))
2524rexrab 3337 . . . . 5 (∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹))
2625bicomi 213 . . . 4 (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹)
2722, 23, 263bitr4g 302 . . 3 (𝐷 ∈ V → (𝐹𝑅 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹)))
28 elpwi 4117 . . . . 5 (𝑦 ∈ 𝒫 𝐷𝑦𝐷)
29 simp1 1054 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝐷 ∈ V)
303pmtrmvd 17699 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → dom ((𝑇𝑦) ∖ I ) = 𝑦)
31 simp2 1055 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝑦𝐷)
3230, 31eqsstrd 3602 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷)
33 simp3 1056 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝑦 ≈ 2𝑜)
3430, 33eqbrtrd 4605 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜)
3529, 32, 343jca 1235 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → (𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜))
3630eqcomd 2616 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝑦 = dom ((𝑇𝑦) ∖ I ))
3736fveq2d 6107 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I )))
3835, 37jca 553 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))))
39 difeq1 3683 . . . . . . . . . . 11 ((𝑇𝑦) = 𝐹 → ((𝑇𝑦) ∖ I ) = (𝐹 ∖ I ))
4039dmeqd 5248 . . . . . . . . . 10 ((𝑇𝑦) = 𝐹 → dom ((𝑇𝑦) ∖ I ) = dom (𝐹 ∖ I ))
41 pmtrfrn.p . . . . . . . . . 10 𝑃 = dom (𝐹 ∖ I )
4240, 41syl6eqr 2662 . . . . . . . . 9 ((𝑇𝑦) = 𝐹 → dom ((𝑇𝑦) ∖ I ) = 𝑃)
43 sseq1 3589 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷𝑃𝐷))
44 breq1 4586 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜𝑃 ≈ 2𝑜))
4543, 443anbi23d 1394 . . . . . . . . . . 11 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ↔ (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜)))
4645adantl 481 . . . . . . . . . 10 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ↔ (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜)))
47 simpl 472 . . . . . . . . . . 11 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (𝑇𝑦) = 𝐹)
48 fveq2 6103 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (𝑇‘dom ((𝑇𝑦) ∖ I )) = (𝑇𝑃))
4948adantl 481 . . . . . . . . . . 11 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (𝑇‘dom ((𝑇𝑦) ∖ I )) = (𝑇𝑃))
5047, 49eqeq12d 2625 . . . . . . . . . 10 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → ((𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I )) ↔ 𝐹 = (𝑇𝑃)))
5146, 50anbi12d 743 . . . . . . . . 9 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5242, 51mpdan 699 . . . . . . . 8 ((𝑇𝑦) = 𝐹 → (((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5338, 52syl5ibcom 234 . . . . . . 7 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → ((𝑇𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
54533exp 1256 . . . . . 6 (𝐷 ∈ V → (𝑦𝐷 → (𝑦 ≈ 2𝑜 → ((𝑇𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))))
5554imp4a 612 . . . . 5 (𝐷 ∈ V → (𝑦𝐷 → ((𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))))
5628, 55syl5 33 . . . 4 (𝐷 ∈ V → (𝑦 ∈ 𝒫 𝐷 → ((𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))))
5756rexlimdv 3012 . . 3 (𝐷 ∈ V → (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5827, 57sylbid 229 . 2 (𝐷 ∈ V → (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5912, 58mpcom 37 1 (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   cuni 4372   class class class wbr 4583  cmpt 4643   I cid 4948  dom cdm 5038  ran crn 5039   Fn wfn 5799  cfv 5804  2𝑜c2o 7441  cen 7838  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-fin 7845  df-pmtr 17685
This theorem is referenced by:  pmtrffv  17702  pmtrrn2  17703  pmtrfinv  17704  pmtrfmvdn0  17705  pmtrff1o  17706  pmtrfcnv  17707  pmtrfb  17708
  Copyright terms: Public domain W3C validator