MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   GIF version

Theorem pmtrmvd 17699
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrmvd ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → dom ((𝑇𝑃) ∖ I ) = 𝑃)

Proof of Theorem pmtrmvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
21pmtrf 17698 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃):𝐷𝐷)
3 ffn 5958 . . 3 ((𝑇𝑃):𝐷𝐷 → (𝑇𝑃) Fn 𝐷)
4 fndifnfp 6347 . . 3 ((𝑇𝑃) Fn 𝐷 → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
52, 3, 43syl 18 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
61pmtrfv 17695 . . . . . 6 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) → ((𝑇𝑃)‘𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
76neeq1d 2841 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
8 iffalse 4045 . . . . . . . 8 𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = 𝑧)
98necon1ai 2809 . . . . . . 7 (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃)
10 iftrue 4042 . . . . . . . . . 10 (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
1110adantl 481 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
12 1onn 7606 . . . . . . . . . . . 12 1𝑜 ∈ ω
1312a1i 11 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → 1𝑜 ∈ ω)
14 simpl3 1059 . . . . . . . . . . . 12 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → 𝑃 ≈ 2𝑜)
15 df-2o 7448 . . . . . . . . . . . 12 2𝑜 = suc 1𝑜
1614, 15syl6breq 4624 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1𝑜)
17 simpr 476 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → 𝑧𝑃)
18 dif1en 8078 . . . . . . . . . . 11 ((1𝑜 ∈ ω ∧ 𝑃 ≈ suc 1𝑜𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1𝑜)
1913, 16, 17, 18syl3anc 1318 . . . . . . . . . 10 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1𝑜)
20 en1uniel 7914 . . . . . . . . . 10 ((𝑃 ∖ {𝑧}) ≈ 1𝑜 (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
21 eldifsni 4261 . . . . . . . . . 10 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2219, 20, 213syl 18 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2311, 22eqnetrd 2849 . . . . . . . 8 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)
2423ex 449 . . . . . . 7 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
259, 24impbid2 215 . . . . . 6 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
2625adantr 480 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
277, 26bitrd 267 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧𝑧𝑃))
2827rabbidva 3163 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = {𝑧𝐷𝑧𝑃})
29 incom 3767 . . . 4 (𝑃𝐷) = (𝐷𝑃)
30 dfin5 3548 . . . 4 (𝐷𝑃) = {𝑧𝐷𝑧𝑃}
3129, 30eqtri 2632 . . 3 (𝑃𝐷) = {𝑧𝐷𝑧𝑃}
3228, 31syl6eqr 2662 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = (𝑃𝐷))
33 simp2 1055 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃𝐷)
34 df-ss 3554 . . 3 (𝑃𝐷 ↔ (𝑃𝐷) = 𝑃)
3533, 34sylib 207 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑃𝐷) = 𝑃)
365, 32, 353eqtrd 2648 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → dom ((𝑇𝑃) ∖ I ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cdif 3537  cin 3539  wss 3540  ifcif 4036  {csn 4125   cuni 4372   class class class wbr 4583   I cid 4948  dom cdm 5038  suc csuc 5642   Fn wfn 5799  wf 5800  cfv 5804  ωcom 6957  1𝑜c1o 7440  2𝑜c2o 7441  cen 7838  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-fin 7845  df-pmtr 17685
This theorem is referenced by:  pmtrfrn  17701  pmtrfb  17708  symggen  17713  pmtrdifellem2  17720  mdetralt  20233  mdetunilem7  20243
  Copyright terms: Public domain W3C validator