Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrffv Structured version   Visualization version   GIF version

Theorem pmtrffv 17702
 Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom (𝐹 ∖ I )
Assertion
Ref Expression
pmtrffv ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrffv
StepHypRef Expression
1 pmtrrn.t . . . . . 6 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 pmtrfrn.p . . . . . 6 𝑃 = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 17701 . . . . 5 (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))
54simprd 478 . . . 4 (𝐹𝑅𝐹 = (𝑇𝑃))
65fveq1d 6105 . . 3 (𝐹𝑅 → (𝐹𝑍) = ((𝑇𝑃)‘𝑍))
76adantr 480 . 2 ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = ((𝑇𝑃)‘𝑍))
84simpld 474 . . 3 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜))
91pmtrfv 17695 . . 3 (((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
108, 9sylan 487 . 2 ((𝐹𝑅𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
117, 10eqtrd 2644 1 ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  {csn 4125  ∪ cuni 4372   class class class wbr 4583   I cid 4948  dom cdm 5038  ran crn 5039  ‘cfv 5804  2𝑜c2o 7441   ≈ cen 7838  pmTrspcpmtr 17684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-fin 7845  df-pmtr 17685 This theorem is referenced by:  pmtrfinv  17704  pmtrdifellem3  17721  pmtrdifellem4  17722  psgnunilem1  17736
 Copyright terms: Public domain W3C validator