Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem2 Structured version   Visualization version   GIF version

Theorem opphllem2 25440
 Description: Lemma for opphl 25446. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem2.z (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
Assertion
Ref Expression
opphllem2 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem2
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 hpg.d . . 3 = (dist‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 hpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . 3 𝐿 = (LineG‘𝐺)
6 opphl.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
8 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐺 ∈ TarskiG)
10 opphllem1.c . . . 4 (𝜑𝐶𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑃)
12 opphllem1.b . . . 4 (𝜑𝐵𝑃)
1312adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑃)
14 opphllem1.s . . . 4 𝑆 = ((pInvG‘𝐺)‘𝑀)
15 eqid 2610 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 opphllem1.m . . . . . . 7 (𝜑𝑀𝐷)
171, 5, 3, 8, 6, 16tglnpt 25244 . . . . . 6 (𝜑𝑀𝑃)
1817adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝑃)
191, 2, 3, 5, 15, 9, 18, 14, 13mircl 25356 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ∈ 𝑃)
2016adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝐷)
21 opphllem1.r . . . . . 6 (𝜑𝑅𝐷)
2221adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝐷)
231, 2, 3, 5, 15, 9, 14, 7, 20, 22mirln 25371 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ∈ 𝐷)
249adantr 480 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐺 ∈ TarskiG)
2518adantr 480 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝑃)
2613adantr 480 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝑃)
271, 2, 3, 5, 15, 24, 25, 14, 26mirmir 25357 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) = 𝐵)
287adantr 480 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
2920adantr 480 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝐷)
30 simpr 476 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆𝐵) ∈ 𝐷)
311, 2, 3, 5, 15, 24, 14, 28, 29, 30mirln 25371 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) ∈ 𝐷)
3227, 31eqeltrrd 2689 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝐷)
33 simpr 476 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
34 simplr 788 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
3533, 34eqeltrd 2688 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
368ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
3712ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
381, 5, 3, 8, 6, 21tglnpt 25244 . . . . . . . . . . . . 13 (𝜑𝑅𝑃)
3938ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
40 opphllem1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑃)
4140ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
42 opphllem1.y . . . . . . . . . . . . 13 (𝜑𝐵𝑅)
4342ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
4443necomd 2837 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
45 simpllr 795 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐼𝐵))
461, 3, 5, 36, 39, 37, 41, 44, 45btwnlng1 25314 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
471, 3, 5, 36, 37, 39, 41, 43, 46lncom 25317 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
486ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
49 simplr 788 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
5021ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
511, 3, 5, 36, 37, 39, 43, 43, 48, 49, 50tglinethru 25331 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
5247, 51eleqtrrd 2691 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
5335, 52pm2.61dane 2869 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → 𝐴𝐷)
54 opphllem1.o . . . . . . . . . . 11 (𝜑𝐴𝑂𝐶)
551, 2, 3, 4, 5, 6, 8, 40, 10, 54oppne1 25433 . . . . . . . . . 10 (𝜑 → ¬ 𝐴𝐷)
5655ad2antrr 758 . . . . . . . . 9 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
5753, 56pm2.65da 598 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐵𝐷)
5857adantr 480 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → ¬ 𝐵𝐷)
5932, 58pm2.65da 598 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ (𝑆𝐵) ∈ 𝐷)
6057idi 2 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐵𝐷)
611, 2, 3, 5, 15, 9, 18, 14, 13mirbtwn 25353 . . . . . . 7 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀 ∈ ((𝑆𝐵)𝐼𝐵))
62 eleq1 2676 . . . . . . . 8 (𝑡 = 𝑀 → (𝑡 ∈ ((𝑆𝐵)𝐼𝐵) ↔ 𝑀 ∈ ((𝑆𝐵)𝐼𝐵)))
6362rspcev 3282 . . . . . . 7 ((𝑀𝐷𝑀 ∈ ((𝑆𝐵)𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ ((𝑆𝐵)𝐼𝐵))
6420, 61, 63syl2anc 691 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ ((𝑆𝐵)𝐼𝐵))
6559, 60, 64jca31 555 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ((¬ (𝑆𝐵) ∈ 𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ ((𝑆𝐵)𝐼𝐵)))
661, 2, 3, 4, 19, 13islnopp 25431 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ((𝑆𝐵)𝑂𝐵 ↔ ((¬ (𝑆𝐵) ∈ 𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ ((𝑆𝐵)𝐼𝐵))))
6765, 66mpbird 246 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵)𝑂𝐵)
68 eqidd 2611 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) = (𝑆𝐵))
69 nelne2 2879 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ (𝑆𝐵) ∈ 𝐷) → (𝑆𝑅) ≠ (𝑆𝐵))
7023, 59, 69syl2anc 691 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ (𝑆𝐵))
7170necomd 2837 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ≠ (𝑆𝑅))
721, 2, 3, 4, 5, 6, 8, 40, 10, 54oppne2 25434 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
7372adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐶𝐷)
74 nelne2 2879 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ 𝐶𝐷) → (𝑆𝑅) ≠ 𝐶)
7523, 73, 74syl2anc 691 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ 𝐶)
7675necomd 2837 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ≠ (𝑆𝑅))
77 opphllem1.n . . . . . . . 8 (𝜑𝐴 = (𝑆𝐶))
7877eqcomd 2616 . . . . . . 7 (𝜑 → (𝑆𝐶) = 𝐴)
791, 2, 3, 5, 15, 8, 17, 14, 10, 78mircom 25358 . . . . . 6 (𝜑 → (𝑆𝐴) = 𝐶)
8079adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) = 𝐶)
8138adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝑃)
8240adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴𝑃)
83 simpr 476 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴 ∈ (𝑅𝐼𝐵))
841, 2, 3, 5, 15, 9, 18, 14, 81, 82, 13, 83mirbtwni 25366 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
8580, 84eqeltrrd 2689 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
861, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 67, 20, 68, 71, 76, 85opphllem1 25439 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑂𝐵)
871, 2, 3, 4, 5, 7, 9, 11, 13, 86oppcom 25436 . 2 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑂𝐶)
886adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
898adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐺 ∈ TarskiG)
9040adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑃)
9112adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑃)
9210adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐶𝑃)
9321adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑅𝐷)
9454adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑂𝐶)
9516adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑀𝐷)
9677adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴 = (𝑆𝐶))
97 opphllem1.x . . . 4 (𝜑𝐴𝑅)
9897adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑅)
9942adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑅)
100 simpr 476 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵 ∈ (𝑅𝐼𝐴))
1011, 2, 3, 4, 5, 88, 89, 14, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100opphllem1 25439 . 2 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑂𝐶)
102 opphllem2.z . 2 (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
10387, 101, 102mpjaodan 823 1 (𝜑𝐵𝑂𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   ∖ cdif 3537   class class class wbr 4583  {copab 4642  ran crn 5039  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-mir 25348 This theorem is referenced by:  opphllem4  25442  opphl  25446
 Copyright terms: Public domain W3C validator