MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem4 Structured version   Visualization version   GIF version

Theorem opphllem4 25442
Description: Lemma for opphl 25446. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem3.t (𝜑𝑅𝑆)
opphllem3.l (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
opphllem3.u (𝜑𝑈𝑃)
opphllem3.v (𝜑 → (𝑁𝑅) = 𝑆)
opphllem4.u (𝜑𝑉𝑃)
opphllem4.1 (𝜑𝑈(𝐾𝑅)𝐴)
opphllem4.2 (𝜑𝑉(𝐾𝑆)𝐶)
Assertion
Ref Expression
opphllem4 (𝜑𝑈𝑂𝑉)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝑡,𝑉   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem opphllem4
StepHypRef Expression
1 hpg.p . 2 𝑃 = (Base‘𝐺)
2 hpg.d . 2 = (dist‘𝐺)
3 hpg.i . 2 𝐼 = (Itv‘𝐺)
4 hpg.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . 2 𝐿 = (LineG‘𝐺)
6 opphl.d . 2 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . 2 (𝜑𝐺 ∈ TarskiG)
8 opphllem4.u . 2 (𝜑𝑉𝑃)
9 opphllem3.u . 2 (𝜑𝑈𝑃)
10 opphllem5.n . . 3 𝑁 = ((pInvG‘𝐺)‘𝑀)
11 eqid 2610 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
12 opphllem5.m . . . 4 (𝜑𝑀𝑃)
131, 2, 3, 5, 11, 7, 12, 10, 9mircl 25356 . . 3 (𝜑 → (𝑁𝑈) ∈ 𝑃)
14 opphllem5.s . . 3 (𝜑𝑆𝐷)
15 opphllem5.o . . . . . . . . . . 11 (𝜑𝐴𝑂𝐶)
16 opphllem5.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
17 opphllem5.c . . . . . . . . . . . 12 (𝜑𝐶𝑃)
181, 2, 3, 4, 16, 17islnopp 25431 . . . . . . . . . . 11 (𝜑 → (𝐴𝑂𝐶 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))))
1915, 18mpbid 221 . . . . . . . . . 10 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶)))
2019simpld 474 . . . . . . . . 9 (𝜑 → (¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷))
2120simpld 474 . . . . . . . 8 (𝜑 → ¬ 𝐴𝐷)
22 opphllem5.r . . . . . . . . . . . 12 (𝜑𝑅𝐷)
231, 5, 3, 7, 6, 22tglnpt 25244 . . . . . . . . . . 11 (𝜑𝑅𝑃)
24 opphl.k . . . . . . . . . . . . 13 𝐾 = (hlG‘𝐺)
25 opphllem4.1 . . . . . . . . . . . . 13 (𝜑𝑈(𝐾𝑅)𝐴)
261, 3, 24, 9, 16, 23, 7, 25hlne1 25300 . . . . . . . . . . . 12 (𝜑𝑈𝑅)
2726necomd 2837 . . . . . . . . . . 11 (𝜑𝑅𝑈)
281, 3, 24, 9, 16, 23, 7, 5, 25hlln 25302 . . . . . . . . . . 11 (𝜑𝑈 ∈ (𝐴𝐿𝑅))
291, 3, 24, 9, 16, 23, 7ishlg 25297 . . . . . . . . . . . . 13 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑈𝑅𝐴𝑅 ∧ (𝑈 ∈ (𝑅𝐼𝐴) ∨ 𝐴 ∈ (𝑅𝐼𝑈)))))
3025, 29mpbid 221 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑅𝐴𝑅 ∧ (𝑈 ∈ (𝑅𝐼𝐴) ∨ 𝐴 ∈ (𝑅𝐼𝑈))))
3130simp2d 1067 . . . . . . . . . . 11 (𝜑𝐴𝑅)
321, 3, 5, 7, 23, 9, 16, 27, 28, 31lnrot1 25318 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑅𝐿𝑈))
3332adantr 480 . . . . . . . . 9 ((𝜑𝑈𝐷) → 𝐴 ∈ (𝑅𝐿𝑈))
347adantr 480 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝐺 ∈ TarskiG)
3523adantr 480 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝑅𝑃)
369adantr 480 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝑈𝑃)
3727adantr 480 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝑅𝑈)
386adantr 480 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝐷 ∈ ran 𝐿)
3922adantr 480 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝑅𝐷)
40 simpr 476 . . . . . . . . . 10 ((𝜑𝑈𝐷) → 𝑈𝐷)
411, 3, 5, 34, 35, 36, 37, 37, 38, 39, 40tglinethru 25331 . . . . . . . . 9 ((𝜑𝑈𝐷) → 𝐷 = (𝑅𝐿𝑈))
4233, 41eleqtrrd 2691 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐴𝐷)
4321, 42mtand 689 . . . . . . 7 (𝜑 → ¬ 𝑈𝐷)
447adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐺 ∈ TarskiG)
4512adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝑃)
469adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝑃)
471, 2, 3, 5, 11, 44, 45, 10, 46mirmir 25357 . . . . . . . 8 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) = 𝑈)
486adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
491, 5, 3, 7, 6, 14tglnpt 25244 . . . . . . . . . . . 12 (𝜑𝑆𝑃)
50 opphllem3.t . . . . . . . . . . . . 13 (𝜑𝑅𝑆)
5150necomd 2837 . . . . . . . . . . . 12 (𝜑𝑆𝑅)
521, 2, 3, 5, 11, 7, 12, 10, 23mirbtwn 25353 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ((𝑁𝑅)𝐼𝑅))
53 opphllem3.v . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑅) = 𝑆)
5453oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑅)𝐼𝑅) = (𝑆𝐼𝑅))
5552, 54eleqtrd 2690 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (𝑆𝐼𝑅))
561, 3, 5, 7, 49, 23, 12, 51, 55btwnlng1 25314 . . . . . . . . . . 11 (𝜑𝑀 ∈ (𝑆𝐿𝑅))
571, 3, 5, 7, 49, 23, 51, 51, 6, 14, 22tglinethru 25331 . . . . . . . . . . 11 (𝜑𝐷 = (𝑆𝐿𝑅))
5856, 57eleqtrrd 2691 . . . . . . . . . 10 (𝜑𝑀𝐷)
5958adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝐷)
60 simpr 476 . . . . . . . . 9 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁𝑈) ∈ 𝐷)
611, 2, 3, 5, 11, 44, 10, 48, 59, 60mirln 25371 . . . . . . . 8 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) ∈ 𝐷)
6247, 61eqeltrrd 2689 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝐷)
6343, 62mtand 689 . . . . . 6 (𝜑 → ¬ (𝑁𝑈) ∈ 𝐷)
6463, 43jca 553 . . . . 5 (𝜑 → (¬ (𝑁𝑈) ∈ 𝐷 ∧ ¬ 𝑈𝐷))
651, 2, 3, 5, 11, 7, 12, 10, 9mirbtwn 25353 . . . . . 6 (𝜑𝑀 ∈ ((𝑁𝑈)𝐼𝑈))
66 eleq1 2676 . . . . . . 7 (𝑡 = 𝑀 → (𝑡 ∈ ((𝑁𝑈)𝐼𝑈) ↔ 𝑀 ∈ ((𝑁𝑈)𝐼𝑈)))
6766rspcev 3282 . . . . . 6 ((𝑀𝐷𝑀 ∈ ((𝑁𝑈)𝐼𝑈)) → ∃𝑡𝐷 𝑡 ∈ ((𝑁𝑈)𝐼𝑈))
6858, 65, 67syl2anc 691 . . . . 5 (𝜑 → ∃𝑡𝐷 𝑡 ∈ ((𝑁𝑈)𝐼𝑈))
6964, 68jca 553 . . . 4 (𝜑 → ((¬ (𝑁𝑈) ∈ 𝐷 ∧ ¬ 𝑈𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ ((𝑁𝑈)𝐼𝑈)))
701, 2, 3, 4, 13, 9islnopp 25431 . . . 4 (𝜑 → ((𝑁𝑈)𝑂𝑈 ↔ ((¬ (𝑁𝑈) ∈ 𝐷 ∧ ¬ 𝑈𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ ((𝑁𝑈)𝐼𝑈))))
7169, 70mpbird 246 . . 3 (𝜑 → (𝑁𝑈)𝑂𝑈)
72 eqidd 2611 . . 3 (𝜑 → (𝑁𝑈) = (𝑁𝑈))
73 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
74 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
75 opphllem3.l . . . . . . . 8 (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
761, 2, 3, 4, 5, 6, 7, 24, 10, 16, 17, 22, 14, 12, 15, 73, 74, 50, 75, 9, 53opphllem3 25441 . . . . . . 7 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
7725, 76mpbid 221 . . . . . 6 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝐶)
78 opphllem4.2 . . . . . . 7 (𝜑𝑉(𝐾𝑆)𝐶)
791, 3, 24, 8, 17, 49, 7, 78hlcomd 25299 . . . . . 6 (𝜑𝐶(𝐾𝑆)𝑉)
801, 3, 24, 13, 17, 8, 7, 49, 77, 79hltr 25305 . . . . 5 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝑉)
811, 3, 24, 13, 8, 49, 7ishlg 25297 . . . . 5 (𝜑 → ((𝑁𝑈)(𝐾𝑆)𝑉 ↔ ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))))
8280, 81mpbid 221 . . . 4 (𝜑 → ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈)))))
8382simp1d 1066 . . 3 (𝜑 → (𝑁𝑈) ≠ 𝑆)
8482simp2d 1067 . . 3 (𝜑𝑉𝑆)
8582simp3d 1068 . . 3 (𝜑 → ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))
861, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 71, 58, 72, 83, 84, 85opphllem2 25440 . 2 (𝜑𝑉𝑂𝑈)
871, 2, 3, 4, 5, 6, 7, 8, 9, 86oppcom 25436 1 (𝜑𝑈𝑂𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537   class class class wbr 4583  {copab 4642  ran crn 5039  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  ≤Gcleg 25277  hlGchlg 25295  pInvGcmir 25347  ⟂Gcperpg 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-hlg 25296  df-mir 25348  df-rag 25389  df-perpg 25391
This theorem is referenced by:  opphllem5  25443
  Copyright terms: Public domain W3C validator