 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Structured version   Visualization version   GIF version

Theorem mulassnq 9660
 Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 9598 . . . . . . 7 (((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)) = ((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶)))
2 mulasspi 9598 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
31, 2opeq12i 4345 . . . . . 6 ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
4 elpqn 9626 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
543ad2ant1 1075 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
6 elpqn 9626 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
763ad2ant2 1076 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
8 mulpipq2 9640 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
95, 7, 8syl2anc 691 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
10 relxp 5150 . . . . . . . . 9 Rel (N × N)
11 elpqn 9626 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
12113ad2ant3 1077 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
13 1st2nd 7105 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
1410, 12, 13sylancr 694 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
159, 14oveq12d 6567 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩))
16 xp1st 7089 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
175, 16syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
18 xp1st 7089 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
197, 18syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
20 mulclpi 9594 . . . . . . . . 9 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
2117, 19, 20syl2anc 691 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
22 xp2nd 7090 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
235, 22syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
24 xp2nd 7090 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
257, 24syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
26 mulclpi 9594 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
2723, 25, 26syl2anc 691 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
28 xp1st 7089 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
2912, 28syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
30 xp2nd 7090 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
3112, 30syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
32 mulpipq 9641 . . . . . . . 8 (((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3321, 27, 29, 31, 32syl22anc 1319 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3415, 33eqtrd 2644 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
35 1st2nd 7105 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3610, 5, 35sylancr 694 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
37 mulpipq2 9640 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
387, 12, 37syl2anc 691 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
3936, 38oveq12d 6567 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
40 mulclpi 9594 . . . . . . . . 9 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
4119, 29, 40syl2anc 691 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
42 mulclpi 9594 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
4325, 31, 42syl2anc 691 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
44 mulpipq 9641 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4517, 23, 41, 43, 44syl22anc 1319 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4639, 45eqtrd 2644 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
473, 34, 463eqtr4a 2670 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (𝐴 ·pQ (𝐵 ·pQ 𝐶)))
4847fveq2d 6107 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶)) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶))))
49 mulerpq 9658 . . . 4 (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶))
50 mulerpq 9658 . . . 4 (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶)))
5148, 49, 503eqtr4g 2669 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
52 mulpqnq 9642 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
53523adant3 1074 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
54 nqerid 9634 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
5554eqcomd 2616 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
56553ad2ant3 1077 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
5753, 56oveq12d 6567 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)))
58 nqerid 9634 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
5958eqcomd 2616 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
60593ad2ant1 1075 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
61 mulpqnq 9642 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
62613adant1 1072 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
6360, 62oveq12d 6567 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 ·Q 𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
6451, 57, 633eqtr4d 2654 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
65 mulnqf 9650 . . . 4 ·Q :(Q × Q)⟶Q
6665fdmi 5965 . . 3 dom ·Q = (Q × Q)
67 0nnq 9625 . . 3 ¬ ∅ ∈ Q
6866, 67ndmovass 6720 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
6964, 68pm2.61i 175 1 ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ⟨cop 4131   × cxp 5036  Rel wrel 5043  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Ncnpi 9545   ·N cmi 9547   ·pQ cmpq 9550  Qcnq 9553  [Q]cerq 9555   ·Q cmq 9557 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-mi 9575  df-lti 9576  df-mpq 9610  df-enq 9612  df-nq 9613  df-erq 9614  df-mq 9616  df-1nq 9617 This theorem is referenced by:  recmulnq  9665  halfnq  9677  ltrnq  9680  addclprlem2  9718  mulclprlem  9720  mulasspr  9725  1idpr  9730  prlem934  9734  prlem936  9748  reclem3pr  9750
 Copyright terms: Public domain W3C validator