MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpqn Structured version   Visualization version   GIF version

Theorem elpqn 9626
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elpqn (𝐴Q𝐴 ∈ (N × N))

Proof of Theorem elpqn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq 9613 . . 3 Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd𝑥) <N (2nd𝑦))}
2 ssrab2 3650 . . 3 {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd𝑥) <N (2nd𝑦))} ⊆ (N × N)
31, 2eqsstri 3598 . 2 Q ⊆ (N × N)
43sseli 3564 1 (𝐴Q𝐴 ∈ (N × N))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 1977  wral 2896  {crab 2900   class class class wbr 4583   × cxp 5036  cfv 5804  2nd c2nd 7058  Ncnpi 9545   <N clti 9548   ~Q ceq 9552  Qcnq 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-in 3547  df-ss 3554  df-nq 9613
This theorem is referenced by:  nqereu  9630  nqerid  9634  enqeq  9635  addpqnq  9639  mulpqnq  9642  ordpinq  9644  addclnq  9646  mulclnq  9648  addnqf  9649  mulnqf  9650  adderpq  9657  mulerpq  9658  addassnq  9659  mulassnq  9660  distrnq  9662  mulidnq  9664  recmulnq  9665  ltsonq  9670  lterpq  9671  ltanq  9672  ltmnq  9673  ltexnq  9676  archnq  9681  wuncn  9870
  Copyright terms: Public domain W3C validator