MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idpr Structured version   Visualization version   GIF version

Theorem 1idpr 9730
Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idpr (𝐴P → (𝐴 ·P 1P) = 𝐴)

Proof of Theorem 1idpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2902 . . . . 5 (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)))
2 19.42v 1905 . . . . . 6 (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
3 elprnq 9692 . . . . . . . . . 10 ((𝐴P𝑓𝐴) → 𝑓Q)
4 breq1 4586 . . . . . . . . . . 11 (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
5 df-1p 9683 . . . . . . . . . . . . 13 1P = {𝑔𝑔 <Q 1Q}
65abeq2i 2722 . . . . . . . . . . . 12 (𝑔 ∈ 1P𝑔 <Q 1Q)
7 ltmnq 9673 . . . . . . . . . . . . 13 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
8 mulidnq 9664 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
98breq2d 4595 . . . . . . . . . . . . 13 (𝑓Q → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
107, 9bitrd 267 . . . . . . . . . . . 12 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
116, 10syl5rbb 272 . . . . . . . . . . 11 (𝑓Q → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ 1P))
124, 11sylan9bbr 733 . . . . . . . . . 10 ((𝑓Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
133, 12sylan 487 . . . . . . . . 9 (((𝐴P𝑓𝐴) ∧ 𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
1413ex 449 . . . . . . . 8 ((𝐴P𝑓𝐴) → (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓𝑔 ∈ 1P)))
1514pm5.32rd 670 . . . . . . 7 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
1615exbidv 1837 . . . . . 6 ((𝐴P𝑓𝐴) → (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
172, 16syl5rbbr 274 . . . . 5 ((𝐴P𝑓𝐴) → (∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
181, 17syl5bb 271 . . . 4 ((𝐴P𝑓𝐴) → (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
1918rexbidva 3031 . . 3 (𝐴P → (∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
20 1pr 9716 . . . 4 1PP
21 df-mp 9685 . . . . 5 ·P = (𝑦P, 𝑧P ↦ {𝑤 ∣ ∃𝑢𝑦𝑣𝑧 𝑤 = (𝑢 ·Q 𝑣)})
22 mulclnq 9648 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
2321, 22genpelv 9701 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
2420, 23mpan2 703 . . 3 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
25 prnmax 9696 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 𝑥 <Q 𝑓)
26 ltrelnq 9627 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
2726brel 5090 . . . . . . . . . 10 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
28 vex 3176 . . . . . . . . . . . . . 14 𝑓 ∈ V
29 vex 3176 . . . . . . . . . . . . . 14 𝑥 ∈ V
30 fvex 6113 . . . . . . . . . . . . . 14 (*Q𝑓) ∈ V
31 mulcomnq 9654 . . . . . . . . . . . . . 14 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
32 mulassnq 9660 . . . . . . . . . . . . . 14 ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤))
3328, 29, 30, 31, 32caov12 6760 . . . . . . . . . . . . 13 (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓)))
34 recidnq 9666 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
3534oveq2d 6565 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
3633, 35syl5eq 2656 . . . . . . . . . . . 12 (𝑓Q → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
37 mulidnq 9664 . . . . . . . . . . . 12 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3836, 37sylan9eqr 2666 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = 𝑥)
3938eqcomd 2616 . . . . . . . . . 10 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
40 ovex 6577 . . . . . . . . . . 11 (𝑥 ·Q (*Q𝑓)) ∈ V
41 oveq2 6557 . . . . . . . . . . . 12 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q 𝑔) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
4241eqeq2d 2620 . . . . . . . . . . 11 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q 𝑔) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
4340, 42spcev 3273 . . . . . . . . . 10 (𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4427, 39, 433syl 18 . . . . . . . . 9 (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4544a1i 11 . . . . . . . 8 (𝑓𝐴 → (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4645ancld 574 . . . . . . 7 (𝑓𝐴 → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
4746reximia 2992 . . . . . 6 (∃𝑓𝐴 𝑥 <Q 𝑓 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4825, 47syl 17 . . . . 5 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4948ex 449 . . . 4 (𝐴P → (𝑥𝐴 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
50 prcdnq 9694 . . . . . 6 ((𝐴P𝑓𝐴) → (𝑥 <Q 𝑓𝑥𝐴))
5150adantrd 483 . . . . 5 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5251rexlimdva 3013 . . . 4 (𝐴P → (∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5349, 52impbid 201 . . 3 (𝐴P → (𝑥𝐴 ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
5419, 24, 533bitr4d 299 . 2 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ 𝑥𝐴))
5554eqrdv 2608 1 (𝐴P → (𝐴 ·P 1P) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Qcnq 9553  1Qc1q 9554   ·Q cmq 9557  *Qcrq 9558   <Q cltq 9559  Pcnp 9560  1Pc1p 9561   ·P cmp 9563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619  df-np 9682  df-1p 9683  df-mp 9685
This theorem is referenced by:  m1m1sr  9793  1idsr  9798
  Copyright terms: Public domain W3C validator