MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmodup Structured version   Visualization version   GIF version

Theorem modaddmodup 12595
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 12339 . . . . . . . 8 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℤ)
21zred 11358 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
4 zmodcl 12552 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0red 11229 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
65adantl 481 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
73, 6readdcld 9948 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
87ancoms 468 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
9 nnrp 11718 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
109ad2antlr 759 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ∈ ℝ+)
11 elfzo2 12342 . . . . . 6 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ↔ (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀))
12 eluz2 11569 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ↔ ((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵))
13 nnre 10904 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
1514adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℝ)
165adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
17 zre 11258 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
1817adantr 480 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
1915, 16, 18lesubaddd 10503 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2019biimpd 218 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2120impancom 455 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
22213adant1 1072 . . . . . . . 8 (((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2312, 22sylbi 206 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
24233ad2ant1 1075 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2511, 24sylbi 206 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2625impcom 445 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)))
27 eluzelz 11573 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
2817, 5anim12i 588 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ))
2913, 13jca 553 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3029adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3130adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3228, 31jca 553 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
3332adantr 480 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
34 simpr 476 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → 𝐵 < 𝑀)
35 zre 11258 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
36 modlt 12541 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) < 𝑀)
3735, 9, 36syl2an 493 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) < 𝑀)
385, 14, 37ltled 10064 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ≤ 𝑀)
3938ad2antlr 759 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐴 mod 𝑀) ≤ 𝑀)
4034, 39jca 553 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀))
41 ltleadd 10390 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀)))
4233, 40, 41sylc 63 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀))
43 nncn 10905 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
44432timesd 11152 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
4544adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) = (𝑀 + 𝑀))
4645ad2antlr 759 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (2 · 𝑀) = (𝑀 + 𝑀))
4742, 46breqtrrd 4611 . . . . . . . . . . 11 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
4847exp31 628 . . . . . . . . . 10 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 < 𝑀 → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
4948com23 84 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5027, 49syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5150imp 444 . . . . . . 7 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
52513adant2 1073 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5311, 52sylbi 206 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5453impcom 445 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
55 2submod 12593 . . . . 5 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
5655eqcomd 2616 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
578, 10, 26, 54, 56syl22anc 1319 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
5835adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℝ)
5958adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐴 ∈ ℝ)
602adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐵 ∈ ℝ)
61 modadd2mod 12582 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6259, 60, 10, 61syl3anc 1318 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6357, 62eqtrd 2644 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6463ex 449 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  cz 11254  cuz 11563  +crp 11708  ..^cfzo 12334   mod cmo 12530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531
This theorem is referenced by:  cshwidxmod  13400
  Copyright terms: Public domain W3C validator