Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  modifeq2int Structured version   Visualization version   GIF version

Theorem modifeq2int 12594
 Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
modifeq2int ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))

Proof of Theorem modifeq2int
StepHypRef Expression
1 nn0re 11178 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 nnrp 11718 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
31, 2anim12i 588 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
433adant3 1074 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
54adantl 481 . . . . 5 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
6 nn0ge0 11195 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
763ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴)
87anim1i 590 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (0 ≤ 𝐴𝐴 < 𝐵))
98ancoms 468 . . . . 5 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ 𝐴𝐴 < 𝐵))
10 modid 12557 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
115, 9, 10syl2anc 691 . . . 4 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = 𝐴)
12 iftrue 4042 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = 𝐴)
1312eqcomd 2616 . . . . 5 (𝐴 < 𝐵𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1413adantr 480 . . . 4 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1511, 14eqtrd 2644 . . 3 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1615ex 449 . 2 (𝐴 < 𝐵 → ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵))))
174adantr 480 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
18 nnre 10904 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
19 lenlt 9995 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2018, 1, 19syl2anr 494 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
21203adant3 1074 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2221biimpar 501 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
23 simpl3 1059 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵))
24 2submod 12593 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
2517, 22, 23, 24syl12anc 1316 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴𝐵))
26 iffalse 4045 . . . . . 6 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
2726adantl 481 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
2827eqcomd 2616 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
2925, 28eqtrd 2644 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
3029expcom 450 . 2 𝐴 < 𝐵 → ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵))))
3116, 30pm2.61i 175 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ifcif 4036   class class class wbr 4583  (class class class)co 6549  ℝcr 9814  0cc0 9815   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℝ+crp 11708   mod cmo 12530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator