MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   GIF version

Theorem mavmul0g 20178
Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0g ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)

Proof of Theorem mavmul0g
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6558 . . 3 ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ · ∅))
2 mavmul0.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32mavmul0 20177 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
41, 3sylan9eq 2664 . 2 (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
5 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2610 . . . . . 6 (.r𝑅) = (.r𝑅)
7 simpr 476 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
8 0fin 8073 . . . . . . . 8 ∅ ∈ Fin
9 eleq1 2676 . . . . . . . 8 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
108, 9mpbiri 247 . . . . . . 7 (𝑁 = ∅ → 𝑁 ∈ Fin)
1110adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
122, 5, 6, 7, 11, 11mvmulfval 20167 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
1312dmeqd 5248 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
14 0ex 4718 . . . . . . . . . 10 ∅ ∈ V
15 eleq1 2676 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈ V))
1614, 15mpbiri 247 . . . . . . . . 9 (𝑁 = ∅ → 𝑁 ∈ V)
17 mptexg 6389 . . . . . . . . 9 (𝑁 ∈ V → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1816, 17syl 17 . . . . . . . 8 (𝑁 = ∅ → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1918adantr 480 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2019adantr 480 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁))) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2120ralrimivva 2954 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
22 eqid 2610 . . . . . 6 (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))))
2322dmmpt2ga 7131 . . . . 5 (∀𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) × ((Base‘𝑅) ↑𝑚 𝑁)))
2421, 23syl 17 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) × ((Base‘𝑅) ↑𝑚 𝑁)))
25 id 22 . . . . . . . . . . 11 (𝑁 = ∅ → 𝑁 = ∅)
2625, 25xpeq12d 5064 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ × ∅))
27 0xp 5122 . . . . . . . . . 10 (∅ × ∅) = ∅
2826, 27syl6eq 2660 . . . . . . . . 9 (𝑁 = ∅ → (𝑁 × 𝑁) = ∅)
2928oveq2d 6565 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = ((Base‘𝑅) ↑𝑚 ∅))
30 fvex 6113 . . . . . . . . 9 (Base‘𝑅) ∈ V
31 map0e 7781 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
3230, 31mp1i 13 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
3329, 32eqtrd 2644 . . . . . . 7 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 1𝑜)
3433adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 1𝑜)
35 df1o2 7459 . . . . . 6 1𝑜 = {∅}
3634, 35syl6eq 2660 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = {∅})
37 oveq2 6557 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 𝑁) = ((Base‘𝑅) ↑𝑚 ∅))
3830, 31mp1i 13 . . . . . . 7 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
3938, 35syl6eq 2660 . . . . . 6 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 ∅) = {∅})
4037, 39sylan9eq 2664 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 𝑁) = {∅})
4136, 40xpeq12d 5064 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) × ((Base‘𝑅) ↑𝑚 𝑁)) = ({∅} × {∅}))
4213, 24, 413eqtrd 2648 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = ({∅} × {∅}))
43 elsni 4142 . . . . 5 (𝑋 ∈ {∅} → 𝑋 = ∅)
44 elsni 4142 . . . . 5 (𝑌 ∈ {∅} → 𝑌 = ∅)
4543, 44anim12i 588 . . . 4 ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅))
4645con3i 149 . . 3 (¬ (𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}))
47 ndmovg 6715 . . 3 ((dom · = ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅)
4842, 46, 47syl2anr 494 . 2 ((¬ (𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
494, 48pm2.61ian 827 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  c0 3874  {csn 4125  cop 4131  cmpt 4643   × cxp 5036  dom cdm 5038  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  𝑚 cmap 7744  Fincfn 7841  Basecbs 15695  .rcmulr 15769   Σg cgsu 15924   maVecMul cmvmul 20165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-mvmul 20166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator