MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmumamul1 Structured version   Visualization version   GIF version

Theorem mvmumamul1 20179
Description: The multiplication of an MxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an MxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
mvmumamul1.x × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
mvmumamul1.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmumamul1.b 𝐵 = (Base‘𝑅)
mvmumamul1.r (𝜑𝑅 ∈ Ring)
mvmumamul1.m (𝜑𝑀 ∈ Fin)
mvmumamul1.n (𝜑𝑁 ∈ Fin)
mvmumamul1.a (𝜑𝐴 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mvmumamul1.y (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
mvmumamul1.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × {∅})))
Assertion
Ref Expression
mvmumamul1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Distinct variable groups:   𝑖,𝑗,𝑁   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)   · (𝑖,𝑗)   × (𝑖,𝑗)   𝑀(𝑖,𝑗)

Proof of Theorem mvmumamul1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mvmumamul1.t . . . . . 6 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mvmumamul1.b . . . . . 6 𝐵 = (Base‘𝑅)
3 eqid 2610 . . . . . 6 (.r𝑅) = (.r𝑅)
4 mvmumamul1.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑅 ∈ Ring)
6 mvmumamul1.m . . . . . . 7 (𝜑𝑀 ∈ Fin)
76adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑀 ∈ Fin)
8 mvmumamul1.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑁 ∈ Fin)
10 mvmumamul1.a . . . . . . 7 (𝜑𝐴 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
1110adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝐴 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
12 mvmumamul1.y . . . . . . 7 (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
1312adantr 480 . . . . . 6 ((𝜑𝑖𝑀) → 𝑌 ∈ (𝐵𝑚 𝑁))
14 simpr 476 . . . . . 6 ((𝜑𝑖𝑀) → 𝑖𝑀)
151, 2, 3, 5, 7, 9, 11, 13, 14mvmulfv 20169 . . . . 5 ((𝜑𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
1615adantlr 747 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))))
17 fveq2 6103 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑌𝑗) = (𝑌𝑘))
18 oveq1 6556 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗𝑍∅) = (𝑘𝑍∅))
1917, 18eqeq12d 2625 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑌𝑗) = (𝑗𝑍∅) ↔ (𝑌𝑘) = (𝑘𝑍∅)))
2019rspccv 3279 . . . . . . . . . 10 (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2120adantl 481 . . . . . . . . 9 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 → (𝑌𝑘) = (𝑘𝑍∅)))
2221imp 444 . . . . . . . 8 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → (𝑌𝑘) = (𝑘𝑍∅))
2322oveq2d 6565 . . . . . . 7 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑘𝑁) → ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)) = ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))
2423mpteq2dva 4672 . . . . . 6 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘))) = (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅))))
2524oveq2d 6565 . . . . 5 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
2625adantr 480 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑌𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
27 mvmumamul1.x . . . . . . 7 × = (𝑅 maMul ⟨𝑀, 𝑁, {∅}⟩)
28 snfi 7923 . . . . . . . 8 {∅} ∈ Fin
2928a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → {∅} ∈ Fin)
30 mvmumamul1.z . . . . . . . 8 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × {∅})))
3130adantr 480 . . . . . . 7 ((𝜑𝑖𝑀) → 𝑍 ∈ (𝐵𝑚 (𝑁 × {∅})))
32 0ex 4718 . . . . . . . . 9 ∅ ∈ V
3332snid 4155 . . . . . . . 8 ∅ ∈ {∅}
3433a1i 11 . . . . . . 7 ((𝜑𝑖𝑀) → ∅ ∈ {∅})
3527, 2, 3, 5, 7, 9, 29, 11, 31, 14, 34mamufv 20012 . . . . . 6 ((𝜑𝑖𝑀) → (𝑖(𝐴 × 𝑍)∅) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))))
3635eqcomd 2616 . . . . 5 ((𝜑𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3736adantlr 747 . . . 4 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝐴𝑘)(.r𝑅)(𝑘𝑍∅)))) = (𝑖(𝐴 × 𝑍)∅))
3816, 26, 373eqtrd 2648 . . 3 (((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) ∧ 𝑖𝑀) → ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
3938ralrimiva 2949 . 2 ((𝜑 ∧ ∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅)) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅))
4039ex 449 1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑀 ((𝐴 · 𝑌)‘𝑖) = (𝑖(𝐴 × 𝑍)∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  c0 3874  {csn 4125  cop 4131  cotp 4133  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  Basecbs 15695  .rcmulr 15769   Σg cgsu 15924  Ringcrg 18370   maMul cmmul 20008   maVecMul cmvmul 20165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-1o 7447  df-en 7842  df-fin 7845  df-mamu 20009  df-mvmul 20166
This theorem is referenced by:  mavmumamul1  20180
  Copyright terms: Public domain W3C validator