Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat0dimcrng | Structured version Visualization version GIF version |
Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019.) |
Ref | Expression |
---|---|
mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
Ref | Expression |
---|---|
mat0dimcrng | ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0fin 8073 | . . 3 ⊢ ∅ ∈ Fin | |
2 | mat0dim.a | . . . 4 ⊢ 𝐴 = (∅ Mat 𝑅) | |
3 | 2 | matring 20068 | . . 3 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
4 | 1, 3 | mpan 702 | . 2 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ Ring) |
5 | mat0dimbas0 20091 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
6 | 2 | eqcomi 2619 | . . . . . 6 ⊢ (∅ Mat 𝑅) = 𝐴 |
7 | 6 | fveq2i 6106 | . . . . 5 ⊢ (Base‘(∅ Mat 𝑅)) = (Base‘𝐴) |
8 | 7 | eqeq1i 2615 | . . . 4 ⊢ ((Base‘(∅ Mat 𝑅)) = {∅} ↔ (Base‘𝐴) = {∅}) |
9 | eqidd 2611 | . . . . . . 7 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) | |
10 | 0ex 4718 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
11 | oveq1 6556 | . . . . . . . . . . 11 ⊢ (𝑥 = ∅ → (𝑥(.r‘𝐴)𝑦) = (∅(.r‘𝐴)𝑦)) | |
12 | oveq2 6557 | . . . . . . . . . . 11 ⊢ (𝑥 = ∅ → (𝑦(.r‘𝐴)𝑥) = (𝑦(.r‘𝐴)∅)) | |
13 | 11, 12 | eqeq12d 2625 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ((𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅))) |
14 | 13 | ralbidv 2969 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → (∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅))) |
15 | 10, 14 | ralsn 4169 | . . . . . . . 8 ⊢ (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅)) |
16 | oveq2 6557 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (∅(.r‘𝐴)𝑦) = (∅(.r‘𝐴)∅)) | |
17 | oveq1 6556 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → (𝑦(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) | |
18 | 16, 17 | eqeq12d 2625 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → ((∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅))) |
19 | 10, 18 | ralsn 4169 | . . . . . . . 8 ⊢ (∀𝑦 ∈ {∅} (∅(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)∅) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) |
20 | 15, 19 | bitri 263 | . . . . . . 7 ⊢ (∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ (∅(.r‘𝐴)∅) = (∅(.r‘𝐴)∅)) |
21 | 9, 20 | sylibr 223 | . . . . . 6 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
22 | raleq 3115 | . . . . . . . 8 ⊢ ((Base‘𝐴) = {∅} → (∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) | |
23 | 22 | raleqbi1dv 3123 | . . . . . . 7 ⊢ ((Base‘𝐴) = {∅} → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
24 | 23 | adantr 480 | . . . . . 6 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥) ↔ ∀𝑥 ∈ {∅}∀𝑦 ∈ {∅} (𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
25 | 21, 24 | mpbird 246 | . . . . 5 ⊢ (((Base‘𝐴) = {∅} ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
26 | 25 | ex 449 | . . . 4 ⊢ ((Base‘𝐴) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
27 | 8, 26 | sylbi 206 | . . 3 ⊢ ((Base‘(∅ Mat 𝑅)) = {∅} → (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
28 | 5, 27 | mpcom 37 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥)) |
29 | eqid 2610 | . . 3 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
30 | eqid 2610 | . . 3 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
31 | 29, 30 | iscrng2 18386 | . 2 ⊢ (𝐴 ∈ CRing ↔ (𝐴 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(.r‘𝐴)𝑦) = (𝑦(.r‘𝐴)𝑥))) |
32 | 4, 28, 31 | sylanbrc 695 | 1 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∅c0 3874 {csn 4125 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 Basecbs 15695 .rcmulr 15769 Ringcrg 18370 CRingccrg 18371 Mat cmat 20032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-sup 8231 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-hom 15793 df-cco 15794 df-0g 15925 df-gsum 15926 df-prds 15931 df-pws 15933 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mulg 17364 df-subg 17414 df-ghm 17481 df-cntz 17573 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-subrg 18601 df-lmod 18688 df-lss 18754 df-sra 18993 df-rgmod 18994 df-dsmm 19895 df-frlm 19910 df-mamu 20009 df-mat 20033 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |