Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamumat1cl Structured version   Visualization version   GIF version

Theorem mamumat1cl 20064
 Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
Assertion
Ref Expression
mamumat1cl (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   1 (𝑖,𝑗)   𝐼(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mamumat1cl
StepHypRef Expression
1 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
2 mamumat1cl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 mamumat1cl.o . . . . . . . 8 1 = (1r𝑅)
42, 3ringidcl 18391 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
5 mamumat1cl.z . . . . . . . 8 0 = (0g𝑅)
62, 5ring0cl 18392 . . . . . . 7 (𝑅 ∈ Ring → 0𝐵)
74, 6ifcld 4081 . . . . . 6 (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
81, 7syl 17 . . . . 5 (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑗𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
109ralrimivva 2954 . . 3 (𝜑 → ∀𝑖𝑀𝑗𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
11 mamumat1cl.i . . . 4 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
1211fmpt2 7126 . . 3 (∀𝑖𝑀𝑗𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵𝐼:(𝑀 × 𝑀)⟶𝐵)
1310, 12sylib 207 . 2 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
14 fvex 6113 . . . 4 (Base‘𝑅) ∈ V
152, 14eqeltri 2684 . . 3 𝐵 ∈ V
16 mamumat1cl.m . . . 4 (𝜑𝑀 ∈ Fin)
17 xpfi 8116 . . . 4 ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin)
1816, 16, 17syl2anc 691 . . 3 (𝜑 → (𝑀 × 𝑀) ∈ Fin)
19 elmapg 7757 . . 3 ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵))
2015, 18, 19sylancr 694 . 2 (𝜑 → (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵))
2113, 20mpbird 246 1 (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ifcif 4036   × cxp 5036  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744  Fincfn 7841  Basecbs 15695  0gc0g 15923  1rcur 18324  Ringcrg 18370 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ur 18325  df-ring 18372 This theorem is referenced by:  mamulid  20066  mamurid  20067  matring  20068  mat1  20072
 Copyright terms: Public domain W3C validator