MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapr Structured version   Visualization version   GIF version

Theorem ltapr 9746
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapr (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltapr
StepHypRef Expression
1 dmplp 9713 . 2 dom +P = (P × P)
2 ltrelpr 9699 . 2 <P ⊆ (P × P)
3 0npr 9693 . 2 ¬ ∅ ∈ P
4 ltaprlem 9745 . . . . . 6 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
54adantr 480 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
6 olc 398 . . . . . . . . 9 ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
7 ltaprlem 9745 . . . . . . . . . . . 12 (𝐶P → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
87adantr 480 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 → (𝐶 +P 𝐵)<P (𝐶 +P 𝐴)))
9 ltsopr 9733 . . . . . . . . . . . . 13 <P Or P
10 sotric 4985 . . . . . . . . . . . . 13 ((<P Or P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
119, 10mpan 702 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
1211adantl 481 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐵<P 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴<P 𝐵)))
13 addclpr 9719 . . . . . . . . . . . . 13 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
14 addclpr 9719 . . . . . . . . . . . . 13 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
1513, 14anim12dan 878 . . . . . . . . . . . 12 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P))
16 sotric 4985 . . . . . . . . . . . 12 ((<P Or P ∧ ((𝐶 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐴) ∈ P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
179, 15, 16sylancr 694 . . . . . . . . . . 11 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐵)<P (𝐶 +P 𝐴) ↔ ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
188, 12, 173imtr3d 281 . . . . . . . . . 10 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ (𝐵 = 𝐴𝐴<P 𝐵) → ¬ ((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918con4d 113 . . . . . . . . 9 ((𝐶P ∧ (𝐵P𝐴P)) → (((𝐶 +P 𝐵) = (𝐶 +P 𝐴) ∨ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) → (𝐵 = 𝐴𝐴<P 𝐵)))
206, 19syl5 33 . . . . . . . 8 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (𝐵 = 𝐴𝐴<P 𝐵)))
21 df-or 384 . . . . . . . 8 ((𝐵 = 𝐴𝐴<P 𝐵) ↔ (¬ 𝐵 = 𝐴𝐴<P 𝐵))
2220, 21syl6ib 240 . . . . . . 7 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → (¬ 𝐵 = 𝐴𝐴<P 𝐵)))
2322com23 84 . . . . . 6 ((𝐶P ∧ (𝐵P𝐴P)) → (¬ 𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵)))
249, 2soirri 5441 . . . . . . . 8 ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)
25 oveq2 6557 . . . . . . . . 9 (𝐵 = 𝐴 → (𝐶 +P 𝐵) = (𝐶 +P 𝐴))
2625breq2d 4595 . . . . . . . 8 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐴)))
2724, 26mtbiri 316 . . . . . . 7 (𝐵 = 𝐴 → ¬ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2827pm2.21d 117 . . . . . 6 (𝐵 = 𝐴 → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
2923, 28pm2.61d2 171 . . . . 5 ((𝐶P ∧ (𝐵P𝐴P)) → ((𝐶 +P 𝐴)<P (𝐶 +P 𝐵) → 𝐴<P 𝐵))
305, 29impbid 201 . . . 4 ((𝐶P ∧ (𝐵P𝐴P)) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
31303impb 1252 . . 3 ((𝐶P𝐵P𝐴P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
32313com13 1262 . 2 ((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
331, 2, 3, 32ndmovord 6722 1 (𝐶P → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583   Or wor 4958  (class class class)co 6549  Pcnp 9560   +P cpp 9562  <P cltp 9564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619  df-np 9682  df-plp 9684  df-ltp 9686
This theorem is referenced by:  addcanpr  9747  ltsrpr  9777  gt0srpr  9778  ltsosr  9794  ltasr  9800  ltpsrpr  9809  map2psrpr  9810
  Copyright terms: Public domain W3C validator