Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcanpr | Structured version Visualization version GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by NM, 9-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcanpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addclpr 9719 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
2 | eleq1 2676 | . . . . 5 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P ↔ (𝐴 +P 𝐶) ∈ P)) | |
3 | dmplp 9713 | . . . . . 6 ⊢ dom +P = (P × P) | |
4 | 0npr 9693 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
5 | 3, 4 | ndmovrcl 6718 | . . . . 5 ⊢ ((𝐴 +P 𝐶) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P)) |
6 | 2, 5 | syl6bi 242 | . . . 4 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) ∈ P → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
7 | 1, 6 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (𝐴 ∈ P ∧ 𝐶 ∈ P))) |
8 | ltapr 9746 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐵<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐴 +P 𝐶))) | |
9 | ltapr 9746 | . . . . . . . 8 ⊢ (𝐴 ∈ P → (𝐶<P 𝐵 ↔ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵))) | |
10 | 8, 9 | orbi12d 742 | . . . . . . 7 ⊢ (𝐴 ∈ P → ((𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
11 | 10 | notbid 307 | . . . . . 6 ⊢ (𝐴 ∈ P → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
12 | 11 | ad2antrr 758 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
13 | ltsopr 9733 | . . . . . . 7 ⊢ <P Or P | |
14 | sotrieq 4986 | . . . . . . 7 ⊢ ((<P Or P ∧ (𝐵 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) | |
15 | 13, 14 | mpan 702 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
16 | 15 | ad2ant2l 778 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ ¬ (𝐵<P 𝐶 ∨ 𝐶<P 𝐵))) |
17 | addclpr 9719 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P) → (𝐴 +P 𝐶) ∈ P) | |
18 | sotrieq 4986 | . . . . . . 7 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) | |
19 | 13, 18 | mpan 702 | . . . . . 6 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐴 +P 𝐶) ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
20 | 1, 17, 19 | syl2an 493 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ ¬ ((𝐴 +P 𝐵)<P (𝐴 +P 𝐶) ∨ (𝐴 +P 𝐶)<P (𝐴 +P 𝐵)))) |
21 | 12, 16, 20 | 3bitr4d 299 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 ∈ P ∧ 𝐶 ∈ P)) → (𝐵 = 𝐶 ↔ (𝐴 +P 𝐵) = (𝐴 +P 𝐶))) |
22 | 21 | exbiri 650 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
23 | 7, 22 | syld 46 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))) |
24 | 23 | pm2.43d 51 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 Or wor 4958 (class class class)co 6549 Pcnp 9560 +P cpp 9562 <P cltp 9564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-omul 7452 df-er 7629 df-ni 9573 df-pli 9574 df-mi 9575 df-lti 9576 df-plpq 9609 df-mpq 9610 df-ltpq 9611 df-enq 9612 df-nq 9613 df-erq 9614 df-plq 9615 df-mq 9616 df-1nq 9617 df-rq 9618 df-ltnq 9619 df-np 9682 df-plp 9684 df-ltp 9686 |
This theorem is referenced by: enrer 9765 mulcmpblnr 9771 mulgt0sr 9805 |
Copyright terms: Public domain | W3C validator |