MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapr Structured version   Unicode version

Theorem ltapr 9421
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapr  |-  ( C  e.  P.  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )

Proof of Theorem ltapr
StepHypRef Expression
1 dmplp 9388 . 2  |-  dom  +P.  =  ( P.  X.  P. )
2 ltrelpr 9374 . 2  |-  <P  C_  ( P.  X.  P. )
3 0npr 9368 . 2  |-  -.  (/)  e.  P.
4 ltaprlem 9420 . . . . . 6  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
54adantr 466 . . . . 5  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( A  <P  B  ->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
6 olc 385 . . . . . . . . 9  |-  ( ( C  +P.  A ) 
<P  ( C  +P.  B
)  ->  ( ( C  +P.  B )  =  ( C  +P.  A
)  \/  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
7 ltaprlem 9420 . . . . . . . . . . . 12  |-  ( C  e.  P.  ->  ( B  <P  A  ->  ( C  +P.  B )  <P 
( C  +P.  A
) ) )
87adantr 466 . . . . . . . . . . 11  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( B  <P  A  ->  ( C  +P.  B )  <P  ( C  +P.  A ) ) )
9 ltsopr 9408 . . . . . . . . . . . . 13  |-  <P  Or  P.
10 sotric 4743 . . . . . . . . . . . . 13  |-  ( ( 
<P  Or  P.  /\  ( B  e.  P.  /\  A  e.  P. ) )  -> 
( B  <P  A  <->  -.  ( B  =  A  \/  A  <P  B ) ) )
119, 10mpan 674 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  <P  A  <->  -.  ( B  =  A  \/  A  <P  B ) ) )
1211adantl 467 . . . . . . . . . . 11  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( B  <P  A  <->  -.  ( B  =  A  \/  A  <P  B ) ) )
13 addclpr 9394 . . . . . . . . . . . . 13  |-  ( ( C  e.  P.  /\  B  e.  P. )  ->  ( C  +P.  B
)  e.  P. )
14 addclpr 9394 . . . . . . . . . . . . 13  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  e.  P. )
1513, 14anim12dan 845 . . . . . . . . . . . 12  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( ( C  +P.  B )  e. 
P.  /\  ( C  +P.  A )  e.  P. ) )
16 sotric 4743 . . . . . . . . . . . 12  |-  ( ( 
<P  Or  P.  /\  (
( C  +P.  B
)  e.  P.  /\  ( C  +P.  A )  e.  P. ) )  ->  ( ( C  +P.  B )  <P 
( C  +P.  A
)  <->  -.  ( ( C  +P.  B )  =  ( C  +P.  A
)  \/  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
179, 15, 16sylancr 667 . . . . . . . . . . 11  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( ( C  +P.  B )  <P 
( C  +P.  A
)  <->  -.  ( ( C  +P.  B )  =  ( C  +P.  A
)  \/  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
188, 12, 173imtr3d 270 . . . . . . . . . 10  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( -.  ( B  =  A  \/  A  <P  B )  ->  -.  ( ( C  +P.  B )  =  ( C  +P.  A
)  \/  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1918con4d 108 . . . . . . . . 9  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( (
( C  +P.  B
)  =  ( C  +P.  A )  \/  ( C  +P.  A
)  <P  ( C  +P.  B ) )  ->  ( B  =  A  \/  A  <P  B ) ) )
206, 19syl5 33 . . . . . . . 8  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( ( C  +P.  A )  <P 
( C  +P.  B
)  ->  ( B  =  A  \/  A  <P  B ) ) )
21 df-or 371 . . . . . . . 8  |-  ( ( B  =  A  \/  A  <P  B )  <->  ( -.  B  =  A  ->  A 
<P  B ) )
2220, 21syl6ib 229 . . . . . . 7  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( ( C  +P.  A )  <P 
( C  +P.  B
)  ->  ( -.  B  =  A  ->  A 
<P  B ) ) )
2322com23 81 . . . . . 6  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( -.  B  =  A  ->  ( ( C  +P.  A
)  <P  ( C  +P.  B )  ->  A  <P  B ) ) )
249, 2soirri 5188 . . . . . . . 8  |-  -.  ( C  +P.  A )  <P 
( C  +P.  A
)
25 oveq2 6257 . . . . . . . . 9  |-  ( B  =  A  ->  ( C  +P.  B )  =  ( C  +P.  A
) )
2625breq2d 4378 . . . . . . . 8  |-  ( B  =  A  ->  (
( C  +P.  A
)  <P  ( C  +P.  B )  <->  ( C  +P.  A )  <P  ( C  +P.  A ) ) )
2724, 26mtbiri 304 . . . . . . 7  |-  ( B  =  A  ->  -.  ( C  +P.  A ) 
<P  ( C  +P.  B
) )
2827pm2.21d 109 . . . . . 6  |-  ( B  =  A  ->  (
( C  +P.  A
)  <P  ( C  +P.  B )  ->  A  <P  B ) )
2923, 28pm2.61d2 163 . . . . 5  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( ( C  +P.  A )  <P 
( C  +P.  B
)  ->  A  <P  B ) )
305, 29impbid 193 . . . 4  |-  ( ( C  e.  P.  /\  ( B  e.  P.  /\  A  e.  P. )
)  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
31303impb 1201 . . 3  |-  ( ( C  e.  P.  /\  B  e.  P.  /\  A  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
32313com13 1210 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
331, 2, 3, 32ndmovord 6417 1  |-  ( C  e.  P.  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1872   class class class wbr 4366    Or wor 4716  (class class class)co 6249   P.cnp 9235    +P. cpp 9237    <P cltp 9239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-omul 7142  df-er 7318  df-ni 9248  df-pli 9249  df-mi 9250  df-lti 9251  df-plpq 9284  df-mpq 9285  df-ltpq 9286  df-enq 9287  df-nq 9288  df-erq 9289  df-plq 9290  df-mq 9291  df-1nq 9292  df-rq 9293  df-ltnq 9294  df-np 9357  df-plp 9359  df-ltp 9361
This theorem is referenced by:  addcanpr  9422  ltsrpr  9452  gt0srpr  9453  ltsosr  9469  ltasr  9475  ltpsrpr  9484  map2psrpr  9485
  Copyright terms: Public domain W3C validator