Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsosr Structured version   Visualization version   GIF version

Theorem ltsosr 9794
 Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsosr <R Or R

Proof of Theorem ltsosr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9757 . . 3 R = ((P × P) / ~R )
2 breq1 4586 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R [⟨𝑧, 𝑤⟩] ~R ))
3 eqeq1 2614 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝑓 = [⟨𝑧, 𝑤⟩] ~R ))
4 breq2 4587 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝑓))
53, 4orbi12d 742 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)))
65notbid 307 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)))
72, 6bibi12d 334 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓))))
8 breq2 4587 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R 𝑔))
9 eqeq2 2621 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 = [⟨𝑧, 𝑤⟩] ~R𝑓 = 𝑔))
10 breq1 4586 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R 𝑓𝑔 <R 𝑓))
119, 10orbi12d 742 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓) ↔ (𝑓 = 𝑔𝑔 <R 𝑓)))
1211notbid 307 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓) ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓)))
138, 12bibi12d 334 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)) ↔ (𝑓 <R 𝑔 ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓))))
14 ltsrpr 9777 . . . 4 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧))
15 addclpr 9719 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
16 addclpr 9719 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
17 ltsopr 9733 . . . . . . . 8 <P Or P
18 sotric 4985 . . . . . . . 8 ((<P Or P ∧ ((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
1917, 18mpan 702 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
2015, 16, 19syl2an 493 . . . . . 6 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
2120an42s 866 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
22 enreceq 9766 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
23 ltsrpr 9777 . . . . . . . . 9 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))
24 addcompr 9722 . . . . . . . . . 10 (𝑧 +P 𝑦) = (𝑦 +P 𝑧)
25 addcompr 9722 . . . . . . . . . 10 (𝑤 +P 𝑥) = (𝑥 +P 𝑤)
2624, 25breq12i 4592 . . . . . . . . 9 ((𝑧 +P 𝑦)<P (𝑤 +P 𝑥) ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))
2723, 26bitri 263 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))
2827a1i 11 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)))
2922, 28orbi12d 742 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
3029notbid 307 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
3121, 30bitr4d 270 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
3214, 31syl5bb 271 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
331, 7, 13, 322ecoptocl 7725 . 2 ((𝑓R𝑔R) → (𝑓 <R 𝑔 ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓)))
342anbi1d 737 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )))
35 breq1 4586 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R [⟨𝑣, 𝑢⟩] ~R ))
3634, 35imbi12d 333 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ((([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
37 breq1 4586 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R [⟨𝑣, 𝑢⟩] ~R ))
388, 37anbi12d 743 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R )))
3938imbi1d 330 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
40 breq2 4587 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = → (𝑔 <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R ))
4140anbi2d 736 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R )))
42 breq2 4587 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → (𝑓 <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R ))
4341, 42imbi12d 333 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → (((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R )))
44 ovex 6577 . . . . . . . . . 10 (𝑥 +P 𝑤) ∈ V
45 ovex 6577 . . . . . . . . . 10 (𝑦 +P 𝑧) ∈ V
46 ltapr 9746 . . . . . . . . . 10 (P → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
47 vex 3176 . . . . . . . . . 10 𝑢 ∈ V
48 addcompr 9722 . . . . . . . . . 10 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
4944, 45, 46, 47, 48caovord2 6744 . . . . . . . . 9 (𝑢P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢)))
50 addasspr 9723 . . . . . . . . . 10 ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢))
51 addasspr 9723 . . . . . . . . . 10 ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢))
5250, 51breq12i 4592 . . . . . . . . 9 (((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)))
5349, 52syl6bb 275 . . . . . . . 8 (𝑢P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
5414, 53syl5bb 271 . . . . . . 7 (𝑢P → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
55 ltsrpr 9777 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣))
56 ltapr 9746 . . . . . . . 8 (𝑦P → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
5755, 56syl5bb 271 . . . . . . 7 (𝑦P → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
5854, 57bi2anan9r 914 . . . . . 6 ((𝑦P𝑢P) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))))
59 ltrelpr 9699 . . . . . . . 8 <P ⊆ (P × P)
6017, 59sotri 5442 . . . . . . 7 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))
61 dmplp 9713 . . . . . . . . 9 dom +P = (P × P)
62 0npr 9693 . . . . . . . . 9 ¬ ∅ ∈ P
63 ltapr 9746 . . . . . . . . 9 (𝑤P → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
6461, 59, 62, 63ndmovordi 6723 . . . . . . . 8 ((𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)) → (𝑥 +P 𝑢)<P (𝑦 +P 𝑣))
65 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
66 vex 3176 . . . . . . . . . 10 𝑤 ∈ V
67 addasspr 9723 . . . . . . . . . 10 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
6865, 66, 47, 48, 67caov12 6760 . . . . . . . . 9 (𝑥 +P (𝑤 +P 𝑢)) = (𝑤 +P (𝑥 +P 𝑢))
69 vex 3176 . . . . . . . . . 10 𝑦 ∈ V
70 vex 3176 . . . . . . . . . 10 𝑣 ∈ V
7169, 66, 70, 48, 67caov12 6760 . . . . . . . . 9 (𝑦 +P (𝑤 +P 𝑣)) = (𝑤 +P (𝑦 +P 𝑣))
7268, 71breq12i 4592 . . . . . . . 8 ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)))
73 ltsrpr 9777 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣))
7464, 72, 733imtr4i 280 . . . . . . 7 ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )
7560, 74syl 17 . . . . . 6 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )
7658, 75syl6bi 242 . . . . 5 ((𝑦P𝑢P) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
7776ad2ant2l 778 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
78773adant2 1073 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
791, 36, 39, 43, 783ecoptocl 7726 . 2 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
8033, 79isso2i 4991 1 <R Or R
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ⟨cop 4131   class class class wbr 4583   Or wor 4958  (class class class)co 6549  [cec 7627  Pcnp 9560   +P cpp 9562
 Copyright terms: Public domain W3C validator