Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Visualization version   GIF version

Theorem bi2anan9r 914
 Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9r ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
2 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
31, 2bi2anan9 913 . 2 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
43ancoms 468 1 ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by:  efrn2lp  5020  ltsosr  9794  seqf1olem2  12703  seqf1o  12704  pcval  15387  usg2wlkeq  26236  fneval  31517  prtlem5  33162  rmydioph  36599  wepwsolem  36630  aomclem8  36649  uspgr2wlkeq  40854
 Copyright terms: Public domain W3C validator