MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovord Structured version   Visualization version   GIF version

Theorem ndmovord 6722
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovord.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovord.5 ¬ ∅ ∈ 𝑆
ndmovord.6 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovord (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))

Proof of Theorem ndmovord
StepHypRef Expression
1 ndmovord.6 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
213expia 1259 . 2 ((𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
3 ndmovord.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 5090 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
53brel 5090 . . . . 5 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
6 ndmov.1 . . . . . . . 8 dom 𝐹 = (𝑆 × 𝑆)
7 ndmovord.5 . . . . . . . 8 ¬ ∅ ∈ 𝑆
86, 7ndmovrcl 6718 . . . . . . 7 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
98simprd 478 . . . . . 6 ((𝐶𝐹𝐴) ∈ 𝑆𝐴𝑆)
106, 7ndmovrcl 6718 . . . . . . 7 ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶𝑆𝐵𝑆))
1110simprd 478 . . . . . 6 ((𝐶𝐹𝐵) ∈ 𝑆𝐵𝑆)
129, 11anim12i 588 . . . . 5 (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴𝑆𝐵𝑆))
135, 12syl 17 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴𝑆𝐵𝑆))
144, 13pm5.21ni 366 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1514a1d 25 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15pm2.61i 175 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  c0 3874   class class class wbr 4583   × cxp 5036  dom cdm 5038  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-dm 5048  df-iota 5768  df-fv 5812  df-ov 6552
This theorem is referenced by:  ltapi  9604  ltmpi  9605  ltanq  9672  ltmnq  9673  ltapr  9746  ltasr  9800
  Copyright terms: Public domain W3C validator