MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Structured version   Visualization version   GIF version

Theorem ltaprlem 9721
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 9675 . . . . . 6 <P ⊆ (P × P)
21brel 5079 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 473 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexpri 9720 . . . . 5 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
5 addclpr 9695 . . . . . . . 8 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
6 ltaddpr 9711 . . . . . . . . . 10 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
7 addasspr 9699 . . . . . . . . . . . 12 ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))
8 oveq2 6534 . . . . . . . . . . . 12 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
97, 8syl5eq 2654 . . . . . . . . . . 11 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
109breq2d 4588 . . . . . . . . . 10 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
116, 10syl5ib 232 . . . . . . . . 9 ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1211expd 450 . . . . . . . 8 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
135, 12syl5 33 . . . . . . 7 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1413com3r 84 . . . . . 6 (𝑥P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1514rexlimiv 3007 . . . . 5 (∃𝑥P (𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
164, 15syl 17 . . . 4 (𝐴<P 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
173, 16sylan2i 684 . . 3 (𝐴<P 𝐵 → ((𝐶P𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1817expd 450 . 2 (𝐴<P 𝐵 → (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918pm2.43b 52 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wrex 2895   class class class wbr 4576  (class class class)co 6526  Pcnp 9536   +P cpp 9538  <P cltp 9540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2588  ax-sep 4702  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6823  ax-inf2 8397
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2460  df-mo 2461  df-clab 2595  df-cleq 2601  df-clel 2604  df-nfc 2738  df-ne 2780  df-ral 2899  df-rex 2900  df-reu 2901  df-rmo 2902  df-rab 2903  df-v 3173  df-sbc 3401  df-csb 3498  df-dif 3541  df-un 3543  df-in 3545  df-ss 3552  df-pss 3554  df-nul 3873  df-if 4035  df-pw 4108  df-sn 4124  df-pr 4126  df-tp 4128  df-op 4130  df-uni 4366  df-int 4404  df-iun 4450  df-br 4577  df-opab 4637  df-mpt 4638  df-tr 4674  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6934  df-1st 7035  df-2nd 7036  df-wrecs 7270  df-recs 7331  df-rdg 7369  df-1o 7423  df-oadd 7427  df-omul 7428  df-er 7605  df-ni 9549  df-pli 9550  df-mi 9551  df-lti 9552  df-plpq 9585  df-mpq 9586  df-ltpq 9587  df-enq 9588  df-nq 9589  df-erq 9590  df-plq 9591  df-mq 9592  df-1nq 9593  df-rq 9594  df-ltnq 9595  df-np 9658  df-plp 9660  df-ltp 9662
This theorem is referenced by:  ltapr  9722
  Copyright terms: Public domain W3C validator