Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmiopp | Structured version Visualization version GIF version |
Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
Ref | Expression |
---|---|
lmiopp.p | ⊢ 𝑃 = (Base‘𝐺) |
lmiopp.m | ⊢ − = (dist‘𝐺) |
lmiopp.i | ⊢ 𝐼 = (Itv‘𝐺) |
lmiopp.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmiopp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
lmiopp.h | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmiopp.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
lmiopp.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
lmiopp.n | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmiopp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lmiopp.1 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
Ref | Expression |
---|---|
lmiopp | ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmiopp.1 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | |
2 | lmiopp.p | . . . . . . . . 9 ⊢ 𝑃 = (Base‘𝐺) | |
3 | lmiopp.m | . . . . . . . . 9 ⊢ − = (dist‘𝐺) | |
4 | lmiopp.i | . . . . . . . . 9 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | lmiopp.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | lmiopp.h | . . . . . . . . 9 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
7 | lmiopp.n | . . . . . . . . 9 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
8 | lmiopp.l | . . . . . . . . 9 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | lmiopp.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
10 | lmiopp.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | lmilmi 25481 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
12 | 11 | eqeq1d 2612 | . . . . . . 7 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝐴)) = (𝑀‘𝐴) ↔ 𝐴 = (𝑀‘𝐴))) |
13 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | lmicl 25478 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 13 | lmiinv 25484 | . . . . . . 7 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝐴)) = (𝑀‘𝐴) ↔ (𝑀‘𝐴) ∈ 𝐷)) |
15 | eqcom 2617 | . . . . . . . 8 ⊢ (𝐴 = (𝑀‘𝐴) ↔ (𝑀‘𝐴) = 𝐴) | |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴 = (𝑀‘𝐴) ↔ (𝑀‘𝐴) = 𝐴)) |
17 | 12, 14, 16 | 3bitr3d 297 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ 𝐷 ↔ (𝑀‘𝐴) = 𝐴)) |
18 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | lmiinv 25484 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘𝐴) = 𝐴 ↔ 𝐴 ∈ 𝐷)) |
19 | 17, 18 | bitrd 267 | . . . . 5 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ 𝐷 ↔ 𝐴 ∈ 𝐷)) |
20 | 1, 19 | mtbird 314 | . . . 4 ⊢ (𝜑 → ¬ (𝑀‘𝐴) ∈ 𝐷) |
21 | 1, 20 | jca 553 | . . 3 ⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ∧ ¬ (𝑀‘𝐴) ∈ 𝐷)) |
22 | eqidd 2611 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐴)) | |
23 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 | islmib 25479 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘𝐴) = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))))) |
24 | 22, 23 | mpbid 221 | . . . . 5 ⊢ (𝜑 → ((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴)))) |
25 | 24 | simpld 474 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷) |
26 | 2, 3, 4, 5, 6, 10, 13 | midbtwn 25471 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ (𝐴𝐼(𝑀‘𝐴))) |
27 | eleq1 2676 | . . . . 5 ⊢ (𝑡 = (𝐴(midG‘𝐺)(𝑀‘𝐴)) → (𝑡 ∈ (𝐴𝐼(𝑀‘𝐴)) ↔ (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ (𝐴𝐼(𝑀‘𝐴)))) | |
28 | 27 | rspcev 3282 | . . . 4 ⊢ (((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ (𝐴𝐼(𝑀‘𝐴))) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(𝑀‘𝐴))) |
29 | 25, 26, 28 | syl2anc 691 | . . 3 ⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(𝑀‘𝐴))) |
30 | 21, 29 | jca 553 | . 2 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ (𝑀‘𝐴) ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(𝑀‘𝐴)))) |
31 | lmiopp.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
32 | 2, 3, 4, 31, 10, 13 | islnopp 25431 | . 2 ⊢ (𝜑 → (𝐴𝑂(𝑀‘𝐴) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ (𝑀‘𝐴) ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼(𝑀‘𝐴))))) |
33 | 30, 32 | mpbird 246 | 1 ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ∖ cdif 3537 class class class wbr 4583 {copab 4642 ran crn 5039 ‘cfv 5804 (class class class)co 6549 2c2 10947 Basecbs 15695 distcds 15777 TarskiGcstrkg 25129 DimTarskiG≥cstrkgld 25133 Itvcitv 25135 LineGclng 25136 ⟂Gcperpg 25390 midGcmid 25464 lInvGclmi 25465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-s2 13444 df-s3 13445 df-trkgc 25147 df-trkgb 25148 df-trkgcb 25149 df-trkgld 25151 df-trkg 25152 df-cgrg 25206 df-leg 25278 df-mir 25348 df-rag 25389 df-perpg 25391 df-mid 25466 df-lmi 25467 |
This theorem is referenced by: trgcopyeulem 25497 |
Copyright terms: Public domain | W3C validator |