Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   GIF version

Theorem lcoss 42019
Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))

Proof of Theorem lcoss
Dummy variables 𝑓 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4119 . . . . . . 7 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
21expcom 450 . . . . . 6 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
32adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
43imp 444 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
5 eqid 2610 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2610 . . . . . . 7 (Scalar‘𝑀) = (Scalar‘𝑀)
7 eqid 2610 . . . . . . 7 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
8 eqid 2610 . . . . . . 7 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
9 equequ1 1939 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = 𝑣𝑦 = 𝑣))
109ifbid 4058 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
1110cbvmptv 4678 . . . . . . 7 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑉 ↦ if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
125, 6, 7, 8, 11mptcfsupp 41955 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
13123expa 1257 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
14 eqid 2610 . . . . . . . 8 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
155, 6, 7, 8, 14linc1 42008 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
16153expa 1257 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
1716eqcomd 2616 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
18 eqid 2610 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
196, 18, 8lmod1cl 18713 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
206, 18, 7lmod0cl 18712 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
2119, 20ifcld 4081 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2221ad3antrrr 762 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2322, 14fmptd 6292 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀)))
24 fvex 6113 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
25 simplr 788 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
26 elmapg 7757 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2724, 25, 26sylancr 694 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2823, 27mpbird 246 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
29 breq1 4586 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
30 oveq1 6556 . . . . . . . . 9 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
3130eqeq2d 2620 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑣 = (𝑓( linC ‘𝑀)𝑉) ↔ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)))
3229, 31anbi12d 743 . . . . . . 7 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3332adantl 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3428, 33rspcedv 3286 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉))))
3513, 17, 34mp2and 711 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))
365, 6, 18lcoval 41995 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
3736adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
384, 35, 37mpbir2and 959 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑀 LinCo 𝑉))
3938ex 449 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (𝑀 LinCo 𝑉)))
4039ssrdv 3574 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  1rcur 18324  LModclmod 18686   linC clinc 41987   LinCo clinco 41988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-linc 41989  df-lco 41990
This theorem is referenced by:  lspsslco  42020
  Copyright terms: Public domain W3C validator