Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpsm | Structured version Visualization version GIF version |
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
islshpsm.v | ⊢ 𝑉 = (Base‘𝑊) |
islshpsm.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islshpsm.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islshpsm.p | ⊢ ⊕ = (LSSum‘𝑊) |
islshpsm.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
islshpsm.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
islshpsm | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islshpsm.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | islshpsm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | islshpsm.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | islshpsm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | islshpsm.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | 2, 3, 4, 5 | islshp 33284 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
8 | 1 | ad2antrr 758 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LMod) |
9 | simplrl 796 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝑆) | |
10 | 4, 3 | lspid 18803 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
11 | 8, 9, 10 | syl2anc 691 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘𝑈) = 𝑈) |
12 | 11 | uneq1d 3728 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑁‘𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣}))) |
13 | 12 | fveq2d 6107 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
14 | 2, 4 | lssss 18758 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ⊆ 𝑉) |
16 | snssi 4280 | . . . . . . . . . 10 ⊢ (𝑣 ∈ 𝑉 → {𝑣} ⊆ 𝑉) | |
17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → {𝑣} ⊆ 𝑉) |
18 | 2, 3 | lspun 18808 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
19 | 8, 15, 17, 18 | syl3anc 1318 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
20 | 2, 4, 3 | lspcl 18797 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
21 | 8, 17, 20 | syl2anc 691 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
22 | islshpsm.p | . . . . . . . . . 10 ⊢ ⊕ = (LSSum‘𝑊) | |
23 | 4, 3, 22 | lsmsp 18907 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
24 | 8, 9, 21, 23 | syl3anc 1318 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
25 | 13, 19, 24 | 3eqtr4rd 2655 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣}))) |
26 | 25 | eqeq1d 2612 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
27 | 26 | rexbidva 3031 | . . . . 5 ⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
28 | 27 | pm5.32da 671 | . . . 4 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
29 | 28 | bicomd 212 | . . 3 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
30 | df-3an 1033 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) | |
31 | df-3an 1033 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉)) | |
32 | 29, 30, 31 | 3bitr4g 302 | . 2 ⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
33 | 7, 32 | bitrd 267 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 ∪ cun 3538 ⊆ wss 3540 {csn 4125 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 LSSumclsm 17872 LModclmod 18686 LSubSpclss 18753 LSpanclspn 18792 LSHypclsh 33280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-cntz 17573 df-lsm 17874 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lshyp 33282 |
This theorem is referenced by: lshpnelb 33289 lshpcmp 33293 islshpat 33322 lshpkrex 33423 dochshpncl 35691 |
Copyright terms: Public domain | W3C validator |