Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Visualization version   GIF version

Theorem isbnd3 32753
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑋

Proof of Theorem isbnd3
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 32750 . . 3 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 0re 9919 . . . . . 6 0 ∈ ℝ
32ne0ii 3882 . . . . 5 ℝ ≠ ∅
4 metf 21945 . . . . . . . . . 10 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
5 ffn 5958 . . . . . . . . . 10 (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋))
64, 5syl 17 . . . . . . . . 9 (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
71, 6syl 17 . . . . . . . 8 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
87ad2antrr 758 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋))
91, 4syl 17 . . . . . . . . . . . 12 (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
10 fdm 5964 . . . . . . . . . . . 12 (𝑀:(𝑋 × 𝑋)⟶ℝ → dom 𝑀 = (𝑋 × 𝑋))
119, 10syl 17 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
12 xpeq2 5053 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅))
13 xp0 5471 . . . . . . . . . . . 12 (𝑋 × ∅) = ∅
1412, 13syl6eq 2660 . . . . . . . . . . 11 (𝑋 = ∅ → (𝑋 × 𝑋) = ∅)
1511, 14sylan9eq 2664 . . . . . . . . . 10 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅)
1615adantr 480 . . . . . . . . 9 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅)
17 dm0rn0 5263 . . . . . . . . 9 (dom 𝑀 = ∅ ↔ ran 𝑀 = ∅)
1816, 17sylib 207 . . . . . . . 8 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅)
19 0ss 3924 . . . . . . . 8 ∅ ⊆ (0[,]𝑥)
2018, 19syl6eqss 3618 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥))
21 df-f 5808 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥)))
228, 20, 21sylanbrc 695 . . . . . 6 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
2322ralrimiva 2949 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
24 r19.2z 4012 . . . . 5 ((ℝ ≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
253, 23, 24sylancr 694 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
26 isbnd2 32752 . . . . . 6 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
2726simprbi 479 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
28 2re 10967 . . . . . . . . . . 11 2 ∈ ℝ
29 simprlr 799 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+)
3029rpred 11748 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ)
31 remulcl 9900 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (2 · 𝑟) ∈ ℝ)
3228, 30, 31sylancr 694 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ)
336adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋))
34 simpll 786 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (Met‘𝑋))
35 simprl 790 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥𝑋)
36 simprr 792 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧𝑋)
37 metcl 21947 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝑀𝑧) ∈ ℝ)
3834, 35, 36, 37syl3anc 1318 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ ℝ)
39 metge0 21960 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝑀𝑧))
4034, 35, 36, 39syl3anc 1318 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 0 ≤ (𝑥𝑀𝑧))
4132adantr 480 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) ∈ ℝ)
42 simprll 798 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦𝑋)
4342adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑦𝑋)
44 metcl 21947 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑥𝑋) → (𝑦𝑀𝑥) ∈ ℝ)
4534, 43, 35, 44syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) ∈ ℝ)
46 metcl 21947 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
4734, 43, 36, 46syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
4845, 47readdcld 9948 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ)
49 mettri2 21956 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
5034, 43, 35, 36, 49syl13anc 1320 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
5130adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ)
52 simplrr 797 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟))
5335, 52eleqtrd 2690 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟))
54 metxmet 21949 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5534, 54syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
56 rpxr 11716 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
5756ad2antlr 759 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*)
5857ad2antlr 759 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ*)
59 elbl2 22005 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
6055, 58, 43, 35, 59syl22anc 1319 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
6153, 60mpbid 221 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) < 𝑟)
6236, 52eleqtrd 2690 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟))
63 elbl2 22005 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6455, 58, 43, 36, 63syl22anc 1319 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6562, 64mpbid 221 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) < 𝑟)
6645, 47, 51, 51, 61, 65lt2addd 10529 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟))
6751recnd 9947 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℂ)
68672timesd 11152 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟))
6966, 68breqtrrd 4611 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟))
7038, 48, 41, 50, 69lelttrd 10074 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟))
7138, 41, 70ltled 10064 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟))
72 elicc2 12109 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
732, 41, 72sylancr 694 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
7438, 40, 71, 73mpbir3and 1238 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
7574ralrimivva 2954 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
76 ffnov 6662 . . . . . . . . . . 11 (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))))
7733, 75, 76sylanbrc 695 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))
78 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟)))
7978feq3d 5945 . . . . . . . . . . 11 (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))))
8079rspcev 3282 . . . . . . . . . 10 (((2 · 𝑟) ∈ ℝ ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8132, 77, 80syl2anc 691 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8281expr 641 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8382rexlimdvva 3020 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
841, 83syl 17 . . . . . 6 (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8584adantr 480 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8627, 85mpd 15 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8725, 86pm2.61dane 2869 . . 3 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
881, 87jca 553 . 2 (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
89 simpll 786 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋))
90 simpllr 795 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑥 ∈ ℝ)
9189adantr 480 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (Met‘𝑋))
92 simpr 476 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑦𝑋)
93 met0 21958 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
9491, 92, 93syl2anc 691 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
95 simplr 788 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
9695, 92, 92fovrnd 6704 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥))
97 elicc2 12109 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
982, 90, 97sylancr 694 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
9996, 98mpbid 221 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))
10099simp3d 1068 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ≤ 𝑥)
10194, 100eqbrtrrd 4607 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 0 ≤ 𝑥)
10290, 101ge0p1rpd 11778 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ+)
103 fovrn 6702 . . . . . . . . . . . . . 14 ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
1041033expa 1257 . . . . . . . . . . . . 13 (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
105104adantlll 750 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
106 elicc2 12109 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1072, 90, 106sylancr 694 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
108107adantr 480 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
109105, 108mpbid 221 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
110109simp1d 1066 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
11190adantr 480 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ)
112 peano2re 10088 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
11390, 112syl 17 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ)
114113adantr 480 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥 + 1) ∈ ℝ)
115109simp3d 1068 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ≤ 𝑥)
116111ltp1d 10833 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 < (𝑥 + 1))
117110, 111, 114, 115, 116lelttrd 10074 . . . . . . . . 9 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1))
118117ralrimiva 2949 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
119 rabid2 3096 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
120118, 119sylibr 223 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
12191, 54syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (∞Met‘𝑋))
122113rexrd 9968 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ*)
123 blval 22001 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑥 + 1) ∈ ℝ*) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
124121, 92, 122, 123syl3anc 1318 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
125120, 124eqtr4d 2647 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))
126 oveq2 6557 . . . . . . . 8 (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1)))
127126eqeq2d 2620 . . . . . . 7 (𝑟 = (𝑥 + 1) → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))))
128127rspcev 3282 . . . . . 6 (((𝑥 + 1) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
129102, 125, 128syl2anc 691 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
130129ralrimiva 2949 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
131 isbnd 32749 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
13289, 130, 131sylanbrc 695 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
133132r19.29an 3059 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
13488, 133impbii 198 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  2c2 10947  +crp 11708  [,]cicc 12049  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  Bndcbnd 32736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-bnd 32748
This theorem is referenced by:  isbnd3b  32754  prdsbnd  32762
  Copyright terms: Public domain W3C validator