Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Unicode version

Theorem isbnd3 28832
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
Distinct variable groups:    x, M    x, X

Proof of Theorem isbnd3
Dummy variables  r 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 28829 . . 3  |-  ( M  e.  ( Bnd `  X
)  ->  M  e.  ( Met `  X ) )
2 0re 9498 . . . . . 6  |-  0  e.  RR
3 ne0i 3752 . . . . . 6  |-  ( 0  e.  RR  ->  RR  =/=  (/) )
42, 3ax-mp 5 . . . . 5  |-  RR  =/=  (/)
5 metf 20038 . . . . . . . . . 10  |-  ( M  e.  ( Met `  X
)  ->  M :
( X  X.  X
) --> RR )
6 ffn 5668 . . . . . . . . . 10  |-  ( M : ( X  X.  X ) --> RR  ->  M  Fn  ( X  X.  X ) )
75, 6syl 16 . . . . . . . . 9  |-  ( M  e.  ( Met `  X
)  ->  M  Fn  ( X  X.  X
) )
81, 7syl 16 . . . . . . . 8  |-  ( M  e.  ( Bnd `  X
)  ->  M  Fn  ( X  X.  X
) )
98ad2antrr 725 . . . . . . 7  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  M  Fn  ( X  X.  X ) )
101, 5syl 16 . . . . . . . . . . . 12  |-  ( M  e.  ( Bnd `  X
)  ->  M :
( X  X.  X
) --> RR )
11 fdm 5672 . . . . . . . . . . . 12  |-  ( M : ( X  X.  X ) --> RR  ->  dom 
M  =  ( X  X.  X ) )
1210, 11syl 16 . . . . . . . . . . 11  |-  ( M  e.  ( Bnd `  X
)  ->  dom  M  =  ( X  X.  X
) )
13 xpeq2 4964 . . . . . . . . . . . 12  |-  ( X  =  (/)  ->  ( X  X.  X )  =  ( X  X.  (/) ) )
14 xp0 5365 . . . . . . . . . . . 12  |-  ( X  X.  (/) )  =  (/)
1513, 14syl6eq 2511 . . . . . . . . . . 11  |-  ( X  =  (/)  ->  ( X  X.  X )  =  (/) )
1612, 15sylan9eq 2515 . . . . . . . . . 10  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  ->  dom  M  =  (/) )
1716adantr 465 . . . . . . . . 9  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  dom  M  =  (/) )
18 dm0rn0 5165 . . . . . . . . 9  |-  ( dom 
M  =  (/)  <->  ran  M  =  (/) )
1917, 18sylib 196 . . . . . . . 8  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  ran  M  =  (/) )
20 0ss 3775 . . . . . . . 8  |-  (/)  C_  (
0 [,] x )
2119, 20syl6eqss 3515 . . . . . . 7  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  ran  M  C_  (
0 [,] x ) )
22 df-f 5531 . . . . . . 7  |-  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  ( M  Fn  ( X  X.  X
)  /\  ran  M  C_  ( 0 [,] x
) ) )
239, 21, 22sylanbrc 664 . . . . . 6  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  M : ( X  X.  X ) --> ( 0 [,] x
) )
2423ralrimiva 2830 . . . . 5  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  ->  A. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
25 r19.2z 3878 . . . . 5  |-  ( ( RR  =/=  (/)  /\  A. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )
264, 24, 25sylancr 663 . . . 4  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
27 isbnd2 28831 . . . . . 6  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  <->  ( M  e.  ( *Met `  X )  /\  E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r ) ) )
2827simprbi 464 . . . . 5  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  ->  E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M
) r ) )
29 2re 10503 . . . . . . . . . . 11  |-  2  e.  RR
30 simprlr 762 . . . . . . . . . . . 12  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  r  e.  RR+ )
3130rpred 11139 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  r  e.  RR )
32 remulcl 9479 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  r  e.  RR )  ->  ( 2  x.  r
)  e.  RR )
3329, 31, 32sylancr 663 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  ( 2  x.  r )  e.  RR )
347adantr 465 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  M  Fn  ( X  X.  X
) )
35 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  M  e.  ( Met `  X ) )
36 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  x  e.  X )
37 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
38 metcl 20040 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  X  /\  z  e.  X )  ->  (
x M z )  e.  RR )
3935, 36, 37, 38syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  e.  RR )
40 metge0 20053 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  X  /\  z  e.  X )  ->  0  <_  ( x M z ) )
4135, 36, 37, 40syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
0  <_  ( x M z ) )
4233adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( 2  x.  r
)  e.  RR )
43 simprll 761 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  y  e.  X )
4443adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
45 metcl 20040 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  x  e.  X )  ->  (
y M x )  e.  RR )
4635, 44, 36, 45syl3anc 1219 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M x )  e.  RR )
47 metcl 20040 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  z  e.  X )  ->  (
y M z )  e.  RR )
4835, 44, 37, 47syl3anc 1219 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M z )  e.  RR )
4946, 48readdcld 9525 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( y M x )  +  ( y M z ) )  e.  RR )
50 mettri2 20049 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( Met `  X )  /\  (
y  e.  X  /\  x  e.  X  /\  z  e.  X )
)  ->  ( x M z )  <_ 
( ( y M x )  +  ( y M z ) ) )
5135, 44, 36, 37, 50syl13anc 1221 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  <_  ( (
y M x )  +  ( y M z ) ) )
5231adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
r  e.  RR )
53 simplrr 760 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  X  =  ( y
( ball `  M )
r ) )
5436, 53eleqtrd 2544 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  x  e.  ( y
( ball `  M )
r ) )
55 metxmet 20042 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
5635, 55syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  M  e.  ( *Met `  X ) )
57 rpxr 11110 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  RR+  ->  r  e. 
RR* )
5857ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) )  ->  r  e.  RR* )
5958ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
r  e.  RR* )
60 elbl2 20098 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( *Met `  X
)  /\  r  e.  RR* )  /\  ( y  e.  X  /\  x  e.  X ) )  -> 
( x  e.  ( y ( ball `  M
) r )  <->  ( y M x )  < 
r ) )
6156, 59, 44, 36, 60syl22anc 1220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x  e.  ( y ( ball `  M
) r )  <->  ( y M x )  < 
r ) )
6254, 61mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M x )  <  r )
6337, 53eleqtrd 2544 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
z  e.  ( y ( ball `  M
) r ) )
64 elbl2 20098 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( *Met `  X
)  /\  r  e.  RR* )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( y ( ball `  M
) r )  <->  ( y M z )  < 
r ) )
6556, 59, 44, 37, 64syl22anc 1220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( y ( ball `  M
) r )  <->  ( y M z )  < 
r ) )
6663, 65mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M z )  <  r )
6746, 48, 52, 52, 62, 66lt2addd 10073 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( y M x )  +  ( y M z ) )  <  ( r  +  r ) )
6852recnd 9524 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
r  e.  CC )
69682timesd 10679 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( 2  x.  r
)  =  ( r  +  r ) )
7067, 69breqtrrd 4427 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( y M x )  +  ( y M z ) )  <  ( 2  x.  r ) )
7139, 49, 42, 51, 70lelttrd 9641 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  <  ( 2  x.  r ) )
7239, 42, 71ltled 9634 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  <_  ( 2  x.  r ) )
73 elicc2 11472 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( 2  x.  r
)  e.  RR )  ->  ( ( x M z )  e.  ( 0 [,] (
2  x.  r ) )  <->  ( ( x M z )  e.  RR  /\  0  <_ 
( x M z )  /\  ( x M z )  <_ 
( 2  x.  r
) ) ) )
742, 42, 73sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( x M z )  e.  ( 0 [,] ( 2  x.  r ) )  <-> 
( ( x M z )  e.  RR  /\  0  <_  ( x M z )  /\  ( x M z )  <_  ( 2  x.  r ) ) ) )
7539, 41, 72, 74mpbir3and 1171 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  e.  ( 0 [,] ( 2  x.  r ) ) )
7675ralrimivva 2914 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  A. x  e.  X  A. z  e.  X  ( x M z )  e.  ( 0 [,] (
2  x.  r ) ) )
77 ffnov 6305 . . . . . . . . . . 11  |-  ( M : ( X  X.  X ) --> ( 0 [,] ( 2  x.  r ) )  <->  ( M  Fn  ( X  X.  X
)  /\  A. x  e.  X  A. z  e.  X  ( x M z )  e.  ( 0 [,] (
2  x.  r ) ) ) )
7834, 76, 77sylanbrc 664 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  M :
( X  X.  X
) --> ( 0 [,] ( 2  x.  r
) ) )
79 oveq2 6209 . . . . . . . . . . . 12  |-  ( x  =  ( 2  x.  r )  ->  (
0 [,] x )  =  ( 0 [,] ( 2  x.  r
) ) )
80 feq3 5653 . . . . . . . . . . . 12  |-  ( ( 0 [,] x )  =  ( 0 [,] ( 2  x.  r
) )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  M :
( X  X.  X
) --> ( 0 [,] ( 2  x.  r
) ) ) )
8179, 80syl 16 . . . . . . . . . . 11  |-  ( x  =  ( 2  x.  r )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  M :
( X  X.  X
) --> ( 0 [,] ( 2  x.  r
) ) ) )
8281rspcev 3179 . . . . . . . . . 10  |-  ( ( ( 2  x.  r
)  e.  RR  /\  M : ( X  X.  X ) --> ( 0 [,] ( 2  x.  r ) ) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )
8333, 78, 82syl2anc 661 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
8483expr 615 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
y  e.  X  /\  r  e.  RR+ ) )  ->  ( X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
8584rexlimdvva 2954 . . . . . . 7  |-  ( M  e.  ( Met `  X
)  ->  ( E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
861, 85syl 16 . . . . . 6  |-  ( M  e.  ( Bnd `  X
)  ->  ( E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
8786adantr 465 . . . . 5  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  ->  ( E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
8828, 87mpd 15 . . . 4  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
8926, 88pm2.61dane 2770 . . 3  |-  ( M  e.  ( Bnd `  X
)  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
901, 89jca 532 . 2  |-  ( M  e.  ( Bnd `  X
)  ->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
91 simpll 753 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  M : ( X  X.  X ) --> ( 0 [,] x
) )  ->  M  e.  ( Met `  X
) )
92 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  x  e.  RR )
9391adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  M  e.  ( Met `  X ) )
94 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  y  e.  X )
95 met0 20051 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X )  ->  (
y M y )  =  0 )
9693, 94, 95syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y M y )  =  0 )
97 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  M : ( X  X.  X ) --> ( 0 [,] x ) )
9897, 94, 94fovrnd 6346 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y M y )  e.  ( 0 [,] x ) )
99 elicc2 11472 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( ( y M y )  e.  ( 0 [,] x )  <-> 
( ( y M y )  e.  RR  /\  0  <_  ( y M y )  /\  ( y M y )  <_  x )
) )
1002, 92, 99sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( ( y M y )  e.  ( 0 [,] x )  <-> 
( ( y M y )  e.  RR  /\  0  <_  ( y M y )  /\  ( y M y )  <_  x )
) )
10198, 100mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( ( y M y )  e.  RR  /\  0  <_  ( y M y )  /\  ( y M y )  <_  x )
)
102101simp3d 1002 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y M y )  <_  x )
10396, 102eqbrtrrd 4423 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  0  <_  x )
10492, 103ge0p1rpd 11165 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( x  +  1 )  e.  RR+ )
105 fovrn 6344 . . . . . . . . . . . . . . . 16  |-  ( ( M : ( X  X.  X ) --> ( 0 [,] x )  /\  y  e.  X  /\  z  e.  X
)  ->  ( y M z )  e.  ( 0 [,] x
) )
1061053expa 1188 . . . . . . . . . . . . . . 15  |-  ( ( ( M : ( X  X.  X ) --> ( 0 [,] x
)  /\  y  e.  X )  /\  z  e.  X )  ->  (
y M z )  e.  ( 0 [,] x ) )
107106adantlll 717 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  e.  ( 0 [,] x
) )
108 elicc2 11472 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( ( y M z )  e.  ( 0 [,] x )  <-> 
( ( y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x )
) )
1092, 92, 108sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( ( y M z )  e.  ( 0 [,] x )  <-> 
( ( y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x )
) )
110109adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( (
y M z )  e.  ( 0 [,] x )  <->  ( (
y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x ) ) )
111107, 110mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( (
y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x ) )
112111simp1d 1000 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  e.  RR )
11392adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  x  e.  RR )
114 peano2re 9654 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
11592, 114syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( x  +  1 )  e.  RR )
116115adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( x  +  1 )  e.  RR )
117111simp3d 1002 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  <_  x )
118113ltp1d 10375 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  x  <  ( x  +  1 ) )
119112, 113, 116, 117, 118lelttrd 9641 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  < 
( x  +  1 ) )
120119ralrimiva 2830 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  A. z  e.  X  ( y M z )  <  ( x  +  1 ) )
121 rabid2 3004 . . . . . . . . . 10  |-  ( X  =  { z  e.  X  |  ( y M z )  < 
( x  +  1 ) }  <->  A. z  e.  X  ( y M z )  < 
( x  +  1 ) )
122120, 121sylibr 212 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  X  =  { z  e.  X  |  ( y M z )  <  ( x  + 
1 ) } )
12393, 55syl 16 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  M  e.  ( *Met `  X ) )
124115rexrd 9545 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( x  +  1 )  e.  RR* )
125 blval 20094 . . . . . . . . . 10  |-  ( ( M  e.  ( *Met `  X )  /\  y  e.  X  /\  ( x  +  1 )  e.  RR* )  ->  ( y ( ball `  M ) ( x  +  1 ) )  =  { z  e.  X  |  ( y M z )  < 
( x  +  1 ) } )
126123, 94, 124, 125syl3anc 1219 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y ( ball `  M ) ( x  +  1 ) )  =  { z  e.  X  |  ( y M z )  < 
( x  +  1 ) } )
127122, 126eqtr4d 2498 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  X  =  ( y ( ball `  M
) ( x  + 
1 ) ) )
128 oveq2 6209 . . . . . . . . . 10  |-  ( r  =  ( x  + 
1 )  ->  (
y ( ball `  M
) r )  =  ( y ( ball `  M ) ( x  +  1 ) ) )
129128eqeq2d 2468 . . . . . . . . 9  |-  ( r  =  ( x  + 
1 )  ->  ( X  =  ( y
( ball `  M )
r )  <->  X  =  ( y ( ball `  M ) ( x  +  1 ) ) ) )
130129rspcev 3179 . . . . . . . 8  |-  ( ( ( x  +  1 )  e.  RR+  /\  X  =  ( y (
ball `  M )
( x  +  1 ) ) )  ->  E. r  e.  RR+  X  =  ( y ( ball `  M ) r ) )
131104, 127, 130syl2anc 661 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  E. r  e.  RR+  X  =  ( y (
ball `  M )
r ) )
132131ralrimiva 2830 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  M : ( X  X.  X ) --> ( 0 [,] x
) )  ->  A. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M
) r ) )
133 isbnd 28828 . . . . . 6  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M
) r ) ) )
13491, 132, 133sylanbrc 664 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  M : ( X  X.  X ) --> ( 0 [,] x
) )  ->  M  e.  ( Bnd `  X
) )
135134ex 434 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  ->  M  e.  ( Bnd `  X ) ) )
136135rexlimdva 2947 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x )  ->  M  e.  ( Bnd `  X ) ) )
137136imp 429 . 2  |-  ( ( M  e.  ( Met `  X )  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )  ->  M  e.  ( Bnd `  X ) )
13890, 137impbii 188 1  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   {crab 2803    C_ wss 3437   (/)c0 3746   class class class wbr 4401    X. cxp 4947   dom cdm 4949   ran crn 4950    Fn wfn 5522   -->wf 5523   ` cfv 5527  (class class class)co 6201   RRcr 9393   0cc0 9394   1c1 9395    + caddc 9397    x. cmul 9399   RR*cxr 9529    < clt 9530    <_ cle 9531   2c2 10483   RR+crp 11103   [,]cicc 11415   *Metcxmt 17927   Metcme 17928   ballcbl 17929   Bndcbnd 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-er 7212  df-ec 7214  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-2 10492  df-rp 11104  df-xneg 11201  df-xadd 11202  df-xmul 11203  df-icc 11419  df-psmet 17935  df-xmet 17936  df-met 17937  df-bl 17938  df-bnd 28827
This theorem is referenced by:  isbnd3b  28833  prdsbnd  28841
  Copyright terms: Public domain W3C validator