Proof of Theorem isacs5lem
Step | Hyp | Ref
| Expression |
1 | | unifpw 8152 |
. . . . . 6
⊢ ∪ (𝒫 𝑠 ∩ Fin) = 𝑠 |
2 | 1 | fveq2i 6106 |
. . . . 5
⊢ (𝐹‘∪ (𝒫 𝑠 ∩ Fin)) = (𝐹‘𝑠) |
3 | | vex 3176 |
. . . . . . 7
⊢ 𝑠 ∈ V |
4 | | fpwipodrs 16987 |
. . . . . . 7
⊢ (𝑠 ∈ V →
(toInc‘(𝒫 𝑠
∩ Fin)) ∈ Dirset) |
5 | 3, 4 | mp1i 13 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈
Dirset) |
6 | | inss1 3795 |
. . . . . . . . . 10
⊢
(𝒫 𝑠 ∩
Fin) ⊆ 𝒫 𝑠 |
7 | | elpwi 4117 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) |
8 | | sspwb 4844 |
. . . . . . . . . . . 12
⊢ (𝑠 ⊆ 𝑋 ↔ 𝒫 𝑠 ⊆ 𝒫 𝑋) |
9 | 7, 8 | sylib 207 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋) |
10 | 9 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋) |
11 | 6, 10 | syl5ss 3579 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋) |
12 | | vpwex 4775 |
. . . . . . . . . . 11
⊢ 𝒫
𝑠 ∈ V |
13 | 12 | inex1 4727 |
. . . . . . . . . 10
⊢
(𝒫 𝑠 ∩
Fin) ∈ V |
14 | 13 | elpw 4114 |
. . . . . . . . 9
⊢
((𝒫 𝑠 ∩
Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋) |
15 | 11, 14 | sylibr 223 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋) |
16 | 15 | adantlr 747 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋) |
17 | | simplr 788 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪
(𝐹 “ 𝑡))) |
18 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫
𝑠 ∩
Fin))) |
19 | 18 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔
(toInc‘(𝒫 𝑠
∩ Fin)) ∈ Dirset)) |
20 | | unieq 4380 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ∪ 𝑡 =
∪ (𝒫 𝑠 ∩ Fin)) |
21 | 20 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹‘∪ 𝑡) = (𝐹‘∪
(𝒫 𝑠 ∩
Fin))) |
22 | | imaeq2 5381 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 “ 𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
23 | 22 | unieqd 4382 |
. . . . . . . . . 10
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ∪ (𝐹
“ 𝑡) = ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin))) |
24 | 21, 23 | eqeq12d 2625 |
. . . . . . . . 9
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹‘∪ 𝑡) = ∪
(𝐹 “ 𝑡) ↔ (𝐹‘∪
(𝒫 𝑠 ∩ Fin)) =
∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
25 | 19, 24 | imbi12d 333 |
. . . . . . . 8
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset
→ (𝐹‘∪ (𝒫 𝑠 ∩ Fin)) = ∪
(𝐹 “ (𝒫 𝑠 ∩ Fin))))) |
26 | 25 | rspcva 3280 |
. . . . . . 7
⊢
(((𝒫 𝑠 ∩
Fin) ∈ 𝒫 𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪
(𝐹 “ 𝑡))) →
((toInc‘(𝒫 𝑠
∩ Fin)) ∈ Dirset → (𝐹‘∪
(𝒫 𝑠 ∩ Fin)) =
∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
27 | 16, 17, 26 | syl2anc 691 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset
→ (𝐹‘∪ (𝒫 𝑠 ∩ Fin)) = ∪
(𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
28 | 5, 27 | mpd 15 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹‘∪
(𝒫 𝑠 ∩ Fin)) =
∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
29 | 2, 28 | syl5eqr 2658 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
30 | 29 | ralrimiva 2949 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
31 | 30 | ex 449 |
. 2
⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
32 | 31 | imdistani 722 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |