MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwipodrs Structured version   Visualization version   GIF version

Theorem fpwipodrs 16987
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fpwipodrs (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)

Proof of Theorem fpwipodrs
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4776 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 4729 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
31, 2syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V)
4 0elpw 4760 . . . 4 ∅ ∈ 𝒫 𝐴
5 0fin 8073 . . . 4 ∅ ∈ Fin
6 elin 3758 . . . 4 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
74, 5, 6mpbir2an 957 . . 3 ∅ ∈ (𝒫 𝐴 ∩ Fin)
8 ne0i 3880 . . 3 (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅)
97, 8mp1i 13 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
10 elin 3758 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin))
11 elin 3758 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin))
12 elpwi 4117 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
13 elpwi 4117 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1412, 13anim12i 588 . . . . . . . . 9 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝐴𝑦𝐴))
15 unss 3749 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝑦) ⊆ 𝐴)
16 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
17 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
1816, 17unex 6854 . . . . . . . . . . 11 (𝑥𝑦) ∈ V
1918elpw 4114 . . . . . . . . . 10 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
2015, 19bitr4i 266 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝑦) ∈ 𝒫 𝐴)
2114, 20sylib 207 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
2221ad2ant2r 779 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ 𝒫 𝐴)
23 unfi 8112 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
2423ad2ant2l 778 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
2522, 24elind 3760 . . . . . 6 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
2610, 11, 25syl2anb 495 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
27 ssid 3587 . . . . 5 (𝑥𝑦) ⊆ (𝑥𝑦)
28 sseq2 3590 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑥𝑦) ⊆ 𝑧 ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
2928rspcev 3282 . . . . 5 (((𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
3026, 27, 29sylancl 693 . . . 4 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
3130rgen2a 2960 . . 3 𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧
3231a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
33 isipodrs 16984 . 2 ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧))
343, 9, 32, 33syl3anbrc 1239 1 (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  cfv 5804  Fincfn 7841  Dirsetcdrs 16750  toInccipo 16974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-tset 15787  df-ple 15788  df-ocomp 15790  df-preset 16751  df-drs 16752  df-poset 16769  df-ipo 16975
This theorem is referenced by:  isacs5lem  16992  isnacs3  36291
  Copyright terms: Public domain W3C validator