MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs5lem Unicode version

Theorem isacs5lem 14550
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
isacs5lem  |-  ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  X ( F `  s )  =  U. ( F " ( ~P s  i^i  Fin )
) ) )
Distinct variable groups:    C, s,
t    F, s, t    X, s, t

Proof of Theorem isacs5lem
StepHypRef Expression
1 unifpw 7367 . . . . . 6  |-  U. ( ~P s  i^i  Fin )  =  s
21fveq2i 5690 . . . . 5  |-  ( F `
 U. ( ~P s  i^i  Fin )
)  =  ( F `
 s )
3 vex 2919 . . . . . . 7  |-  s  e. 
_V
4 fpwipodrs 14545 . . . . . . 7  |-  ( s  e.  _V  ->  (toInc `  ( ~P s  i^i 
Fin ) )  e. Dirset
)
53, 4mp1i 12 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  /\  s  e. 
~P X )  -> 
(toInc `  ( ~P s  i^i  Fin ) )  e. Dirset )
6 inss1 3521 . . . . . . . . . 10  |-  ( ~P s  i^i  Fin )  C_ 
~P s
7 elpwi 3767 . . . . . . . . . . . 12  |-  ( s  e.  ~P X  -> 
s  C_  X )
8 sspwb 4373 . . . . . . . . . . . 12  |-  ( s 
C_  X  <->  ~P s  C_ 
~P X )
97, 8sylib 189 . . . . . . . . . . 11  |-  ( s  e.  ~P X  ->  ~P s  C_  ~P X
)
109adantl 453 . . . . . . . . . 10  |-  ( ( C  e.  (Moore `  X )  /\  s  e.  ~P X )  ->  ~P s  C_  ~P X
)
116, 10syl5ss 3319 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  s  e.  ~P X )  -> 
( ~P s  i^i 
Fin )  C_  ~P X )
123pwex 4342 . . . . . . . . . . 11  |-  ~P s  e.  _V
1312inex1 4304 . . . . . . . . . 10  |-  ( ~P s  i^i  Fin )  e.  _V
1413elpw 3765 . . . . . . . . 9  |-  ( ( ~P s  i^i  Fin )  e.  ~P ~P X 
<->  ( ~P s  i^i 
Fin )  C_  ~P X )
1511, 14sylibr 204 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  s  e.  ~P X )  -> 
( ~P s  i^i 
Fin )  e.  ~P ~P X )
1615adantlr 696 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  /\  s  e. 
~P X )  -> 
( ~P s  i^i 
Fin )  e.  ~P ~P X )
17 simplr 732 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  /\  s  e. 
~P X )  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )
18 fveq2 5687 . . . . . . . . . 10  |-  ( t  =  ( ~P s  i^i  Fin )  ->  (toInc `  t )  =  (toInc `  ( ~P s  i^i 
Fin ) ) )
1918eleq1d 2470 . . . . . . . . 9  |-  ( t  =  ( ~P s  i^i  Fin )  ->  (
(toInc `  t )  e. Dirset  <-> 
(toInc `  ( ~P s  i^i  Fin ) )  e. Dirset ) )
20 unieq 3984 . . . . . . . . . . 11  |-  ( t  =  ( ~P s  i^i  Fin )  ->  U. t  =  U. ( ~P s  i^i  Fin ) )
2120fveq2d 5691 . . . . . . . . . 10  |-  ( t  =  ( ~P s  i^i  Fin )  ->  ( F `  U. t )  =  ( F `  U. ( ~P s  i^i 
Fin ) ) )
22 imaeq2 5158 . . . . . . . . . . 11  |-  ( t  =  ( ~P s  i^i  Fin )  ->  ( F " t )  =  ( F " ( ~P s  i^i  Fin )
) )
2322unieqd 3986 . . . . . . . . . 10  |-  ( t  =  ( ~P s  i^i  Fin )  ->  U. ( F " t )  = 
U. ( F "
( ~P s  i^i 
Fin ) ) )
2421, 23eqeq12d 2418 . . . . . . . . 9  |-  ( t  =  ( ~P s  i^i  Fin )  ->  (
( F `  U. t )  =  U. ( F " t )  <-> 
( F `  U. ( ~P s  i^i  Fin ) )  =  U. ( F " ( ~P s  i^i  Fin )
) ) )
2519, 24imbi12d 312 . . . . . . . 8  |-  ( t  =  ( ~P s  i^i  Fin )  ->  (
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) )  <-> 
( (toInc `  ( ~P s  i^i  Fin )
)  e. Dirset  ->  ( F `
 U. ( ~P s  i^i  Fin )
)  =  U. ( F " ( ~P s  i^i  Fin ) ) ) ) )
2625rspcva 3010 . . . . . . 7  |-  ( ( ( ~P s  i^i 
Fin )  e.  ~P ~P X  /\  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t )  =  U. ( F " t ) ) )  ->  (
(toInc `  ( ~P s  i^i  Fin ) )  e. Dirset  ->  ( F `  U. ( ~P s  i^i 
Fin ) )  = 
U. ( F "
( ~P s  i^i 
Fin ) ) ) )
2716, 17, 26syl2anc 643 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  /\  s  e. 
~P X )  -> 
( (toInc `  ( ~P s  i^i  Fin )
)  e. Dirset  ->  ( F `
 U. ( ~P s  i^i  Fin )
)  =  U. ( F " ( ~P s  i^i  Fin ) ) ) )
285, 27mpd 15 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  /\  s  e. 
~P X )  -> 
( F `  U. ( ~P s  i^i  Fin ) )  =  U. ( F " ( ~P s  i^i  Fin )
) )
292, 28syl5eqr 2450 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  /\  s  e. 
~P X )  -> 
( F `  s
)  =  U. ( F " ( ~P s  i^i  Fin ) ) )
3029ralrimiva 2749 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  ->  A. s  e.  ~P  X ( F `
 s )  = 
U. ( F "
( ~P s  i^i 
Fin ) ) )
3130ex 424 . 2  |-  ( C  e.  (Moore `  X
)  ->  ( A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) )  ->  A. s  e.  ~P  X ( F `  s )  =  U. ( F " ( ~P s  i^i  Fin )
) ) )
3231imdistani 672 1  |-  ( ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) )  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  X ( F `  s )  =  U. ( F " ( ~P s  i^i  Fin )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U.cuni 3975   "cima 4840   ` cfv 5413   Fincfn 7068  Moorecmre 13762  mrClscmrc 13763  Dirsetcdrs 14339  toInccipo 14532
This theorem is referenced by:  acsficl  14552  isacs5  14553  isacs4  14554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-tset 13503  df-ple 13504  df-ocomp 13505  df-preset 14340  df-drs 14341  df-poset 14358  df-ipo 14533
  Copyright terms: Public domain W3C validator