MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodclim3 Structured version   Visualization version   GIF version

Theorem iprodclim3 14570
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodclim3.1 𝑍 = (ℤ𝑀)
iprodclim3.2 (𝜑𝑀 ∈ ℤ)
iprodclim3.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
iprodclim3.4 (𝜑𝐹 ∈ dom ⇝ )
iprodclim3.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodclim3.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
iprodclim3 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝐴,𝑛,𝑦   𝑗,𝐹   𝑗,𝑘,𝜑   𝑘,𝑛,𝜑,𝑦   𝑗,𝑀   𝑦,𝑀   𝜑,𝑛,𝑦   𝑗,𝑍,𝑘   𝑛,𝑍,𝑦   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑦,𝑘,𝑛)   𝑀(𝑛)

Proof of Theorem iprodclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodclim3.4 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 14133 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 207 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 prodfc 14514 . . . 4 𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ∏𝑘𝑍 𝐴
5 iprodclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 iprodclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 iprodclim3.3 . . . . 5 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
8 eqidd 2611 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
9 iprodclim3.5 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
10 eqid 2610 . . . . . . 7 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
119, 10fmptd 6292 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
1211ffvelrnda 6267 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
135, 6, 7, 8, 12iprod 14507 . . . 4 (𝜑 → ∏𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
144, 13syl5eqr 2658 . . 3 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
15 seqex 12665 . . . . . . 7 seq𝑀( · , (𝑘𝑍𝐴)) ∈ V
1615a1i 11 . . . . . 6 (𝜑 → seq𝑀( · , (𝑘𝑍𝐴)) ∈ V)
17 iprodclim3.6 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
18 fzssuz 12253 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1918, 5sseqtr4i 3601 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
20 resmpt 5369 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2119, 20ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2221fveq1i 6104 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
23 fvres 6117 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
2422, 23syl5reqr 2659 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2524prodeq2i 14488 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
26 prodfc 14514 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
2725, 26eqtri 2632 . . . . . . . 8 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
28 eqidd 2611 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
29 simpr 476 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
3029, 5syl6eleq 2698 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
31 elfzuz 12209 . . . . . . . . . . . 12 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3231, 5syl6eleqr 2699 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3332, 12sylan2 490 . . . . . . . . . 10 ((𝜑𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3433adantlr 747 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3528, 30, 34fprodser 14518 . . . . . . . 8 ((𝜑𝑗𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3627, 35syl5eqr 2658 . . . . . . 7 ((𝜑𝑗𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3717, 36eqtr2d 2645 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
385, 16, 1, 6, 37climeq 14146 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3938iotabidv 5789 . . . 4 (𝜑 → (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
40 df-fv 5812 . . . 4 ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥)
41 df-fv 5812 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4239, 40, 413eqtr4g 2669 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4314, 42eqtrd 2644 . 2 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
443, 43breqtrrd 4611 1 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  cio 5766  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063  cprod 14474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator