MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom1 Structured version   Visualization version   GIF version

Theorem infunsdom1 8918
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 8919 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom1
StepHypRef Expression
1 simprl 790 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐴𝐵)
2 domsdomtr 7980 . . . . 5 ((𝐴𝐵𝐵 ≺ ω) → 𝐴 ≺ ω)
31, 2sylan 487 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → 𝐴 ≺ ω)
4 unfi2 8114 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
53, 4sylancom 698 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
6 simpllr 795 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → ω ≼ 𝑋)
7 sdomdomtr 7978 . . 3 (((𝐴𝐵) ≺ ω ∧ ω ≼ 𝑋) → (𝐴𝐵) ≺ 𝑋)
85, 6, 7syl2anc 691 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
9 omelon 8426 . . . . . 6 ω ∈ On
10 onenon 8658 . . . . . 6 (ω ∈ On → ω ∈ dom card)
119, 10ax-mp 5 . . . . 5 ω ∈ dom card
12 simpll 786 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝑋 ∈ dom card)
13 sdomdom 7869 . . . . . . 7 (𝐵𝑋𝐵𝑋)
1413ad2antll 761 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵𝑋)
15 numdom 8744 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
1612, 14, 15syl2anc 691 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵 ∈ dom card)
17 domtri2 8698 . . . . 5 ((ω ∈ dom card ∧ 𝐵 ∈ dom card) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1811, 16, 17sylancr 694 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1918biimpar 501 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → ω ≼ 𝐵)
20 uncom 3719 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
2116adantr 480 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵 ∈ dom card)
22 simpr 476 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → ω ≼ 𝐵)
231adantr 480 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐴𝐵)
24 infunabs 8912 . . . . . 6 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2521, 22, 23, 24syl3anc 1318 . . . . 5 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐵𝐴) ≈ 𝐵)
2620, 25syl5eqbr 4618 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≈ 𝐵)
27 simplrr 797 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵𝑋)
28 ensdomtr 7981 . . . 4 (((𝐴𝐵) ≈ 𝐵𝐵𝑋) → (𝐴𝐵) ≺ 𝑋)
2926, 27, 28syl2anc 691 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≺ 𝑋)
3019, 29syldan 486 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
318, 30pm2.61dan 828 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wcel 1977  cun 3538   class class class wbr 4583  dom cdm 5038  Oncon0 5640  ωcom 6957  cen 7838  cdom 7839  csdm 7840  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-cda 8873
This theorem is referenced by:  infunsdom  8919
  Copyright terms: Public domain W3C validator