MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvsca Structured version   Visualization version   GIF version

Theorem imasvsca 16003
Description: The scalar multiplication operation of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imassca.g 𝐺 = (Scalar‘𝑅)
imasvsca.k 𝐾 = (Base‘𝐺)
imasvsca.q · = ( ·𝑠𝑅)
imasvsca.s = ( ·𝑠𝑈)
Assertion
Ref Expression
imasvsca (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
Distinct variable groups:   𝑞,𝑝,𝑥,𝐹   𝑅,𝑝,𝑞,𝑥   𝑥,𝑈   𝑥,𝐵   𝜑,𝑝,𝑞,𝑥   𝐾,𝑝,𝑥   𝑉,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   · (𝑥,𝑞,𝑝)   𝑈(𝑞,𝑝)   𝐺(𝑥,𝑞,𝑝)   𝐾(𝑞)   𝑉(𝑥)   𝑍(𝑥,𝑞,𝑝)

Proof of Theorem imasvsca
Dummy variables 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2610 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2610 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2610 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 imasvsca.k . . . 4 𝐾 = (Base‘𝐺)
7 imassca.g . . . . 5 𝐺 = (Scalar‘𝑅)
87fveq2i 6106 . . . 4 (Base‘𝐺) = (Base‘(Scalar‘𝑅))
96, 8eqtri 2632 . . 3 𝐾 = (Base‘(Scalar‘𝑅))
10 imasvsca.q . . 3 · = ( ·𝑠𝑅)
11 eqid 2610 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
12 eqid 2610 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
13 eqid 2610 . . 3 (dist‘𝑅) = (dist‘𝑅)
14 eqid 2610 . . 3 (le‘𝑅) = (le‘𝑅)
15 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
16 imasbas.r . . . 4 (𝜑𝑅𝑍)
17 eqid 2610 . . . 4 (+g𝑈) = (+g𝑈)
181, 2, 15, 16, 3, 17imasplusg 16000 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
19 eqid 2610 . . . 4 (.r𝑈) = (.r𝑈)
201, 2, 15, 16, 4, 19imasmulr 16001 . . 3 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
21 eqidd 2611 . . 3 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
22 eqidd 2611 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
23 eqidd 2611 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((TopOpen‘𝑅) qTop 𝐹))
24 eqid 2610 . . . 4 (dist‘𝑈) = (dist‘𝑈)
251, 2, 15, 16, 13, 24imasds 15996 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
26 eqidd 2611 . . 3 (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) = ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹))
271, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 25, 26, 15, 16imasval 15994 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
28 eqid 2610 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2928imasvalstr 15935 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
30 vscaid 15839 . 2 ·𝑠 = Slot ( ·𝑠 ‘ndx)
31 snsstp2 4288 . . 3 {⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩} ⊆ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}
32 ssun2 3739 . . . 4 {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩})
33 ssun1 3738 . . . 4 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3432, 33sstri 3577 . . 3 {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3531, 34sstri 3577 . 2 {⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
36 fvex 6113 . . . 4 (Base‘𝑅) ∈ V
372, 36syl6eqel 2696 . . 3 (𝜑𝑉 ∈ V)
38 fvex 6113 . . . . . 6 (Base‘𝐺) ∈ V
396, 38eqeltri 2684 . . . . 5 𝐾 ∈ V
40 snex 4835 . . . . 5 {(𝐹𝑞)} ∈ V
4139, 40mpt2ex 7136 . . . 4 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ∈ V
4241rgenw 2908 . . 3 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ∈ V
43 iunexg 7035 . . 3 ((𝑉 ∈ V ∧ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ∈ V) → 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ∈ V)
4437, 42, 43sylancl 693 . 2 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ∈ V)
45 imasvsca.s . 2 = ( ·𝑠𝑈)
4627, 29, 30, 35, 44, 45strfv3 15736 1 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  {csn 4125  {ctp 4129  cop 4131   ciun 4455  ccnv 5037  ccom 5042  ontowfo 5802  cfv 5804  (class class class)co 6549  cmpt2 6551  1c1 9816  2c2 10947  cdc 11369  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  ·𝑖cip 15773  TopSetcts 15774  lecple 15775  distcds 15777  TopOpenctopn 15905   qTop cqtop 15986  s cimas 15987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-imas 15991
This theorem is referenced by:  imasip  16004  imastset  16005  imasle  16006  imasvscafn  16020  imasvscaval  16021  imasvscaf  16022
  Copyright terms: Public domain W3C validator