MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvsca Structured version   Unicode version

Theorem imasvsca 14578
Description: The scalar multiplication operation of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imassca.g  |-  G  =  (Scalar `  R )
imasvsca.k  |-  K  =  ( Base `  G
)
imasvsca.q  |-  .x.  =  ( .s `  R )
imasvsca.s  |-  .xb  =  ( .s `  U )
Assertion
Ref Expression
imasvsca  |-  ( ph  -> 
.xb  =  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
Distinct variable groups:    q, p, x, F    R, p, q, x    x, U    x, B    ph, p, q, x    K, p, x    V, p, q
Allowed substitution hints:    B( q, p)    .xb (
x, q, p)    .x. ( x, q, p)    U( q, p)    G( x, q, p)    K( q)    V( x)    Z( x, q, p)

Proof of Theorem imasvsca
Dummy variables  u  v  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2454 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2454 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2454 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
6 imasvsca.k . . . 4  |-  K  =  ( Base `  G
)
7 imassca.g . . . . 5  |-  G  =  (Scalar `  R )
87fveq2i 5803 . . . 4  |-  ( Base `  G )  =  (
Base `  (Scalar `  R
) )
96, 8eqtri 2483 . . 3  |-  K  =  ( Base `  (Scalar `  R ) )
10 imasvsca.q . . 3  |-  .x.  =  ( .s `  R )
11 eqid 2454 . . 3  |-  ( .i
`  R )  =  ( .i `  R
)
12 eqid 2454 . . 3  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
13 eqid 2454 . . 3  |-  ( dist `  R )  =  (
dist `  R )
14 eqid 2454 . . 3  |-  ( le
`  R )  =  ( le `  R
)
15 imasbas.f . . . 4  |-  ( ph  ->  F : V -onto-> B
)
16 imasbas.r . . . 4  |-  ( ph  ->  R  e.  Z )
17 eqid 2454 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
181, 2, 15, 16, 3, 17imasplusg 14575 . . 3  |-  ( ph  ->  ( +g  `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
19 eqid 2454 . . . 4  |-  ( .r
`  U )  =  ( .r `  U
)
201, 2, 15, 16, 4, 19imasmulr 14576 . . 3  |-  ( ph  ->  ( .r `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } )
21 eqidd 2455 . . 3  |-  ( ph  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  =  U_ q  e.  V  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
22 eqidd 2455 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( p ( .i `  R ) q )
>. } )
23 eqidd 2455 . . 3  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
24 eqid 2454 . . . 4  |-  ( dist `  U )  =  (
dist `  U )
251, 2, 15, 16, 13, 24imasds 14571 . . 3  |-  ( ph  ->  ( dist `  U
)  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ u  e.  NN  ran  ( z  e.  {
w  e.  ( ( V  X.  V )  ^m  ( 1 ... u ) )  |  ( ( F `  ( 1st `  ( w `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( w `  u
) ) )  =  y  /\  A. v  e.  ( 1 ... (
u  -  1 ) ) ( F `  ( 2nd `  ( w `
 v ) ) )  =  ( F `
 ( 1st `  (
w `  ( v  +  1 ) ) ) ) ) } 
|->  ( RR*s  gsumg  ( (
dist `  R )  o.  z ) ) ) ,  RR* ,  `'  <  ) ) )
26 eqidd 2455 . . 3  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
271, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 25, 26, 15, 16imasval 14569 . 2  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) )
28 eqid 2454 . . 3  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
2928imasvalstr 14510 . 2  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) Struct  <. 1 , ; 1 2 >.
30 vscaid 14421 . 2  |-  .s  = Slot  ( .s `  ndx )
31 snsstp2 4134 . . 3  |-  { <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) >. }  C_  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. }
32 ssun2 3629 . . . 4  |-  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )
33 ssun1 3628 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  ( .r `  U ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  C_  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
3432, 33sstri 3474 . . 3  |-  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) >. ,  <. ( .i `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
3531, 34sstri 3474 . 2  |-  { <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) >. }  C_  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) ,  ( .r `  U
) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( p
( .i `  R
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
36 fvex 5810 . . . 4  |-  ( Base `  R )  e.  _V
372, 36syl6eqel 2550 . . 3  |-  ( ph  ->  V  e.  _V )
38 fvex 5810 . . . . . 6  |-  ( Base `  G )  e.  _V
396, 38eqeltri 2538 . . . . 5  |-  K  e. 
_V
40 snex 4642 . . . . 5  |-  { ( F `  q ) }  e.  _V
4139, 40mpt2ex 6761 . . . 4  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  e.  _V
4241rgenw 2901 . . 3  |-  A. q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  e.  _V
43 iunexg 6664 . . 3  |-  ( ( V  e.  _V  /\  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  e.  _V )  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  e.  _V )
4437, 42, 43sylancl 662 . 2  |-  ( ph  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  e.  _V )
45 imasvsca.s . 2  |-  .xb  =  ( .s `  U )
4627, 29, 30, 35, 44, 45strfv3 14328 1  |-  ( ph  -> 
.xb  =  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   A.wral 2799   _Vcvv 3078    u. cun 3435   {csn 3986   {ctp 3990   <.cop 3992   U_ciun 4280   `'ccnv 4948    o. ccom 4953   -onto->wfo 5525   ` cfv 5527  (class class class)co 6201    |-> cmpt2 6203   1c1 9395   2c2 10483  ;cdc 10867   ndxcnx 14290   Basecbs 14293   +g cplusg 14358   .rcmulr 14359  Scalarcsca 14361   .scvsca 14362   .icip 14363  TopSetcts 14364   lecple 14365   distcds 14367   TopOpenctopn 14480   qTop cqtop 14561    "s cimas 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-3 10493  df-4 10494  df-5 10495  df-6 10496  df-7 10497  df-8 10498  df-9 10499  df-10 10500  df-n0 10692  df-z 10759  df-dec 10868  df-uz 10974  df-fz 11556  df-struct 14295  df-ndx 14296  df-slot 14297  df-base 14298  df-plusg 14371  df-mulr 14372  df-sca 14374  df-vsca 14375  df-ip 14376  df-tset 14377  df-ple 14378  df-ds 14380  df-imas 14566
This theorem is referenced by:  imasip  14579  imastset  14580  imasle  14581  imasvscafn  14595  imasvscaval  14596  imasvscaf  14597
  Copyright terms: Public domain W3C validator