Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaf Structured version   Visualization version   GIF version

Theorem imasvscaf 16022
 Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
imasvscaf.c ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasvscaf (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . 3 (𝜑𝑅𝑍)
5 imasvscaf.g . . 3 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . 3 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . 3 · = ( ·𝑠𝑅)
8 imasvscaf.s . . 3 = ( ·𝑠𝑈)
9 imasvscaf.e . . 3 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 16020 . 2 (𝜑 Fn (𝐾 × 𝐵))
111, 2, 3, 4, 5, 6, 7, 8imasvsca 16003 . . 3 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
12 imasvscaf.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
13 fof 6028 . . . . . . . . . . . . . 14 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑉𝐵)
1514ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1612, 15syldan 486 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1716ralrimivw 2950 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1817anass1rs 845 . . . . . . . . 9 (((𝜑𝑞𝑉) ∧ 𝑝𝐾) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1918ralrimiva 2949 . . . . . . . 8 ((𝜑𝑞𝑉) → ∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
20 eqid 2610 . . . . . . . . 9 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2120fmpt2 7126 . . . . . . . 8 (∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
2219, 21sylib 207 . . . . . . 7 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
23 fssxp 5973 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2422, 23syl 17 . . . . . 6 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2514ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2625snssd 4281 . . . . . . 7 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
27 xpss2 5152 . . . . . . 7 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
28 xpss1 5151 . . . . . . 7 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
2926, 27, 283syl 18 . . . . . 6 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
3024, 29sstrd 3578 . . . . 5 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3130ralrimiva 2949 . . . 4 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
32 iunss 4497 . . . 4 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3331, 32sylibr 223 . . 3 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3411, 33eqsstrd 3602 . 2 (𝜑 ⊆ ((𝐾 × 𝐵) × 𝐵))
35 dff2 6279 . 2 ( :(𝐾 × 𝐵)⟶𝐵 ↔ ( Fn (𝐾 × 𝐵) ∧ ⊆ ((𝐾 × 𝐵) × 𝐵)))
3610, 34, 35sylanbrc 695 1 (𝜑 :(𝐾 × 𝐵)⟶𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  {csn 4125  ∪ ciun 4455   × cxp 5036   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772   “s cimas 15987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-imas 15991 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator