MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   GIF version

Theorem icccmplem3 22435
Description: Lemma for icccmp 22436. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem3 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑧)   𝑆(𝑥,𝑧)   𝐽(𝑥)

Proof of Theorem icccmplem3
Dummy variables 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 icccmp.4 . . . . . . . 8 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3 ssrab2 3650 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
42, 3eqsstri 3598 . . . . . . 7 𝑆 ⊆ (𝐴[,]𝐵)
5 icccmp.5 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
6 icccmp.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
7 iccssre 12126 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 691 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
94, 8syl5ss 3579 . . . . . 6 (𝜑𝑆 ⊆ ℝ)
10 icccmp.1 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
11 icccmp.2 . . . . . . . . 9 𝑇 = (𝐽t (𝐴[,]𝐵))
12 icccmp.3 . . . . . . . . 9 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
13 icccmp.7 . . . . . . . . 9 (𝜑𝐴𝐵)
14 icccmp.8 . . . . . . . . 9 (𝜑𝑈𝐽)
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 22433 . . . . . . . 8 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1615simpld 474 . . . . . . 7 (𝜑𝐴𝑆)
17 ne0i 3880 . . . . . . 7 (𝐴𝑆𝑆 ≠ ∅)
1816, 17syl 17 . . . . . 6 (𝜑𝑆 ≠ ∅)
1915simprd 478 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
20 breq2 4587 . . . . . . . . 9 (𝑣 = 𝐵 → (𝑦𝑣𝑦𝐵))
2120ralbidv 2969 . . . . . . . 8 (𝑣 = 𝐵 → (∀𝑦𝑆 𝑦𝑣 ↔ ∀𝑦𝑆 𝑦𝐵))
2221rspcev 3282 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
236, 19, 22syl2anc 691 . . . . . 6 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
24 suprcl 10862 . . . . . 6 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) → sup(𝑆, ℝ, < ) ∈ ℝ)
259, 18, 23, 24syl3anc 1318 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
26 suprub 10863 . . . . . 6 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
279, 18, 23, 16, 26syl31anc 1321 . . . . 5 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
28 suprleub 10866 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
299, 18, 23, 6, 28syl31anc 1321 . . . . . 6 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
3019, 29mpbird 246 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
31 elicc2 12109 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
325, 6, 31syl2anc 691 . . . . 5 (𝜑 → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
3325, 27, 30, 32mpbir3and 1238 . . . 4 (𝜑 → sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵))
341, 33sseldd 3569 . . 3 (𝜑 → sup(𝑆, ℝ, < ) ∈ 𝑈)
35 eluni2 4376 . . 3 (sup(𝑆, ℝ, < ) ∈ 𝑈 ↔ ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3634, 35sylib 207 . 2 (𝜑 → ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3714sselda 3568 . . . . 5 ((𝜑𝑢𝑈) → 𝑢𝐽)
3812rexmet 22402 . . . . . . 7 𝐷 ∈ (∞Met‘ℝ)
39 eqid 2610 . . . . . . . . . 10 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4012, 39tgioo 22407 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘𝐷)
4110, 40eqtri 2632 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
4241mopni2 22108 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
4338, 42mp3an1 1403 . . . . . 6 ((𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
4443ex 449 . . . . 5 (𝑢𝐽 → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
4537, 44syl 17 . . . 4 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
465ad2antrr 758 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
476ad2antrr 758 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
4813ad2antrr 758 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴𝐵)
4914ad2antrr 758 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑈𝐽)
501ad2antrr 758 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑈)
51 simplr 788 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑢𝑈)
52 simprl 790 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑤 ∈ ℝ+)
53 simprr 792 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
54 eqid 2610 . . . . . 6 sup(𝑆, ℝ, < ) = sup(𝑆, ℝ, < )
55 eqid 2610 . . . . . 6 if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵) = if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵)
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 22434 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵𝑆)
5756rexlimdvaa 3014 . . . 4 ((𝜑𝑢𝑈) → (∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢𝐵𝑆))
5845, 57syld 46 . . 3 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5958rexlimdva 3013 . 2 (𝜑 → (∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
6036, 59mpd 15 1 (𝜑𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   cuni 4372   class class class wbr 4583   × cxp 5036  ran crn 5039  cres 5040  ccom 5042  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cr 9814   + caddc 9818   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  +crp 11708  (,)cioo 12046  [,]cicc 12049  abscabs 13822  t crest 15904  topGenctg 15921  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523
This theorem is referenced by:  icccmp  22436
  Copyright terms: Public domain W3C validator