MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   Unicode version

Theorem icccmplem3 21835
Description: Lemma for icccmp 21836. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
Assertion
Ref Expression
icccmplem3  |-  ( ph  ->  B  e.  S )
Distinct variable groups:    x, z, B    x, A, z    x, D    x, T, z    z, J    x, U, z
Allowed substitution hints:    ph( x, z)    D( z)    S( x, z)    J( x)

Proof of Theorem icccmplem3
Dummy variables  u  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
2 icccmp.4 . . . . . . . 8  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3 ssrab2 3513 . . . . . . . 8  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
42, 3eqsstri 3461 . . . . . . 7  |-  S  C_  ( A [,] B )
5 icccmp.5 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
6 icccmp.6 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
7 iccssre 11713 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
85, 6, 7syl2anc 666 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
94, 8syl5ss 3442 . . . . . 6  |-  ( ph  ->  S  C_  RR )
10 icccmp.1 . . . . . . . . 9  |-  J  =  ( topGen `  ran  (,) )
11 icccmp.2 . . . . . . . . 9  |-  T  =  ( Jt  ( A [,] B ) )
12 icccmp.3 . . . . . . . . 9  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
13 icccmp.7 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
14 icccmp.8 . . . . . . . . 9  |-  ( ph  ->  U  C_  J )
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 21833 . . . . . . . 8  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
1615simpld 461 . . . . . . 7  |-  ( ph  ->  A  e.  S )
17 ne0i 3736 . . . . . . 7  |-  ( A  e.  S  ->  S  =/=  (/) )
1816, 17syl 17 . . . . . 6  |-  ( ph  ->  S  =/=  (/) )
1915simprd 465 . . . . . . 7  |-  ( ph  ->  A. y  e.  S  y  <_  B )
20 breq2 4405 . . . . . . . . 9  |-  ( v  =  B  ->  (
y  <_  v  <->  y  <_  B ) )
2120ralbidv 2826 . . . . . . . 8  |-  ( v  =  B  ->  ( A. y  e.  S  y  <_  v  <->  A. y  e.  S  y  <_  B ) )
2221rspcev 3149 . . . . . . 7  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
236, 19, 22syl2anc 666 . . . . . 6  |-  ( ph  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
24 suprcl 10566 . . . . . 6  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
259, 18, 23, 24syl3anc 1267 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
26 suprub 10567 . . . . . 6  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
279, 18, 23, 16, 26syl31anc 1270 . . . . 5  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
28 suprleub 10570 . . . . . . 7  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
299, 18, 23, 6, 28syl31anc 1270 . . . . . 6  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
3019, 29mpbird 236 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  <_  B )
31 elicc2 11696 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
325, 6, 31syl2anc 666 . . . . 5  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
3325, 27, 30, 32mpbir3and 1190 . . . 4  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  ( A [,] B
) )
341, 33sseldd 3432 . . 3  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e. 
U. U )
35 eluni2 4201 . . 3  |-  ( sup ( S ,  RR ,  <  )  e.  U. U 
<->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3634, 35sylib 200 . 2  |-  ( ph  ->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3714sselda 3431 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  J )
3812rexmet 21802 . . . . . . 7  |-  D  e.  ( *Met `  RR )
39 eqid 2450 . . . . . . . . . 10  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4012, 39tgioo 21807 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  D )
4110, 40eqtri 2472 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
4241mopni2 21501 . . . . . . 7  |-  ( ( D  e.  ( *Met `  RR )  /\  u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u )  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4338, 42mp3an1 1350 . . . . . 6  |-  ( ( u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u
)  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4443ex 436 . . . . 5  |-  ( u  e.  J  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
4537, 44syl 17 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
465ad2antrr 731 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  e.  RR )
476ad2antrr 731 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  RR )
4813ad2antrr 731 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  <_  B
)
4914ad2antrr 731 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  U  C_  J
)
501ad2antrr 731 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( A [,] B )  C_  U. U
)
51 simplr 761 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  u  e.  U
)
52 simprl 763 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  w  e.  RR+ )
53 simprr 765 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
54 eqid 2450 . . . . . 6  |-  sup ( S ,  RR ,  <  )  =  sup ( S ,  RR ,  <  )
55 eqid 2450 . . . . . 6  |-  if ( ( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) )  <_  B ,  ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) ) ,  B )  =  if ( ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) )  <_  B , 
( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) ) ,  B )
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 21834 . . . . 5  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  S
)
5756rexlimdvaa 2879 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u  ->  B  e.  S ) )
5845, 57syld 45 . . 3  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
5958rexlimdva 2878 . 2  |-  ( ph  ->  ( E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
6036, 59mpd 15 1  |-  ( ph  ->  B  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737   {crab 2740    i^i cin 3402    C_ wss 3403   (/)c0 3730   ifcif 3880   ~Pcpw 3950   U.cuni 4197   class class class wbr 4401    X. cxp 4831   ran crn 4834    |` cres 4835    o. ccom 4837   ` cfv 5581  (class class class)co 6288   Fincfn 7566   supcsup 7951   RRcr 9535    + caddc 9539    < clt 9672    <_ cle 9673    - cmin 9857    / cdiv 10266   2c2 10656   RR+crp 11299   (,)cioo 11632   [,]cicc 11635   abscabs 13290   ↾t crest 15312   topGenctg 15329   *Metcxmt 18948   ballcbl 18950   MetOpencmopn 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-map 7471  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-icc 11639  df-seq 12211  df-exp 12270  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-top 19914  df-bases 19915  df-topon 19916
This theorem is referenced by:  icccmp  21836
  Copyright terms: Public domain W3C validator