MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Unicode version

Theorem icccmplem3 21455
Description: Lemma for icccmp 21456. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
Assertion
Ref Expression
icccmplem3  |-  ( ph  ->  B  e.  S )
Distinct variable groups:    x, z, B    x, A, z    x, D    x, T, z    z, J    x, U, z
Allowed substitution hints:    ph( x, z)    D( z)    S( x, z)    J( x)

Proof of Theorem icccmplem3
Dummy variables  u  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
2 icccmp.4 . . . . . . . 8  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3 ssrab2 3581 . . . . . . . 8  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
42, 3eqsstri 3529 . . . . . . 7  |-  S  C_  ( A [,] B )
5 icccmp.5 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
6 icccmp.6 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
7 iccssre 11631 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
85, 6, 7syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
94, 8syl5ss 3510 . . . . . 6  |-  ( ph  ->  S  C_  RR )
10 icccmp.1 . . . . . . . . 9  |-  J  =  ( topGen `  ran  (,) )
11 icccmp.2 . . . . . . . . 9  |-  T  =  ( Jt  ( A [,] B ) )
12 icccmp.3 . . . . . . . . 9  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
13 icccmp.7 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
14 icccmp.8 . . . . . . . . 9  |-  ( ph  ->  U  C_  J )
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 21453 . . . . . . . 8  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
1615simpld 459 . . . . . . 7  |-  ( ph  ->  A  e.  S )
17 ne0i 3799 . . . . . . 7  |-  ( A  e.  S  ->  S  =/=  (/) )
1816, 17syl 16 . . . . . 6  |-  ( ph  ->  S  =/=  (/) )
1915simprd 463 . . . . . . 7  |-  ( ph  ->  A. y  e.  S  y  <_  B )
20 breq2 4460 . . . . . . . . 9  |-  ( v  =  B  ->  (
y  <_  v  <->  y  <_  B ) )
2120ralbidv 2896 . . . . . . . 8  |-  ( v  =  B  ->  ( A. y  e.  S  y  <_  v  <->  A. y  e.  S  y  <_  B ) )
2221rspcev 3210 . . . . . . 7  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
236, 19, 22syl2anc 661 . . . . . 6  |-  ( ph  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
24 suprcl 10523 . . . . . 6  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
259, 18, 23, 24syl3anc 1228 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
26 suprub 10524 . . . . . 6  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
279, 18, 23, 16, 26syl31anc 1231 . . . . 5  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
28 suprleub 10527 . . . . . . 7  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
299, 18, 23, 6, 28syl31anc 1231 . . . . . 6  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
3019, 29mpbird 232 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  <_  B )
31 elicc2 11614 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
325, 6, 31syl2anc 661 . . . . 5  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
3325, 27, 30, 32mpbir3and 1179 . . . 4  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  ( A [,] B
) )
341, 33sseldd 3500 . . 3  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e. 
U. U )
35 eluni2 4255 . . 3  |-  ( sup ( S ,  RR ,  <  )  e.  U. U 
<->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3634, 35sylib 196 . 2  |-  ( ph  ->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3714sselda 3499 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  J )
3812rexmet 21422 . . . . . . 7  |-  D  e.  ( *Met `  RR )
39 eqid 2457 . . . . . . . . . 10  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4012, 39tgioo 21427 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  D )
4110, 40eqtri 2486 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
4241mopni2 21122 . . . . . . 7  |-  ( ( D  e.  ( *Met `  RR )  /\  u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u )  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4338, 42mp3an1 1311 . . . . . 6  |-  ( ( u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u
)  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4443ex 434 . . . . 5  |-  ( u  e.  J  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
4537, 44syl 16 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
465ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  e.  RR )
476ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  RR )
4813ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  <_  B
)
4914ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  U  C_  J
)
501ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( A [,] B )  C_  U. U
)
51 simplr 755 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  u  e.  U
)
52 simprl 756 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  w  e.  RR+ )
53 simprr 757 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
54 eqid 2457 . . . . . 6  |-  sup ( S ,  RR ,  <  )  =  sup ( S ,  RR ,  <  )
55 eqid 2457 . . . . . 6  |-  if ( ( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) )  <_  B ,  ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) ) ,  B )  =  if ( ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) )  <_  B , 
( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) ) ,  B )
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 21454 . . . . 5  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  S
)
5756rexlimdvaa 2950 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u  ->  B  e.  S ) )
5845, 57syld 44 . . 3  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
5958rexlimdva 2949 . 2  |-  ( ph  ->  ( E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
6036, 59mpd 15 1  |-  ( ph  ->  B  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811    i^i cin 3470    C_ wss 3471   (/)c0 3793   ifcif 3944   ~Pcpw 4015   U.cuni 4251   class class class wbr 4456    X. cxp 5006   ran crn 5009    |` cres 5010    o. ccom 5012   ` cfv 5594  (class class class)co 6296   Fincfn 7535   supcsup 7918   RRcr 9508    + caddc 9512    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   2c2 10606   RR+crp 11245   (,)cioo 11554   [,]cicc 11557   abscabs 13079   ↾t crest 14838   topGenctg 14855   *Metcxmt 18530   ballcbl 18532   MetOpencmopn 18535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-icc 11561  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529
This theorem is referenced by:  icccmp  21456
  Copyright terms: Public domain W3C validator