MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Unicode version

Theorem icccmplem3 20532
Description: Lemma for icccmp 20533. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
Assertion
Ref Expression
icccmplem3  |-  ( ph  ->  B  e.  S )
Distinct variable groups:    x, z, B    x, A, z    x, D    x, T, z    z, J    x, U, z
Allowed substitution hints:    ph( x, z)    D( z)    S( x, z)    J( x)

Proof of Theorem icccmplem3
Dummy variables  u  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
2 icccmp.4 . . . . . . . 8  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3 ssrab2 3544 . . . . . . . 8  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
42, 3eqsstri 3493 . . . . . . 7  |-  S  C_  ( A [,] B )
5 icccmp.5 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
6 icccmp.6 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
7 iccssre 11487 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
85, 6, 7syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
94, 8syl5ss 3474 . . . . . 6  |-  ( ph  ->  S  C_  RR )
10 icccmp.1 . . . . . . . . 9  |-  J  =  ( topGen `  ran  (,) )
11 icccmp.2 . . . . . . . . 9  |-  T  =  ( Jt  ( A [,] B ) )
12 icccmp.3 . . . . . . . . 9  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
13 icccmp.7 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
14 icccmp.8 . . . . . . . . 9  |-  ( ph  ->  U  C_  J )
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 20530 . . . . . . . 8  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
1615simpld 459 . . . . . . 7  |-  ( ph  ->  A  e.  S )
17 ne0i 3750 . . . . . . 7  |-  ( A  e.  S  ->  S  =/=  (/) )
1816, 17syl 16 . . . . . 6  |-  ( ph  ->  S  =/=  (/) )
1915simprd 463 . . . . . . 7  |-  ( ph  ->  A. y  e.  S  y  <_  B )
20 breq2 4403 . . . . . . . . 9  |-  ( v  =  B  ->  (
y  <_  v  <->  y  <_  B ) )
2120ralbidv 2845 . . . . . . . 8  |-  ( v  =  B  ->  ( A. y  e.  S  y  <_  v  <->  A. y  e.  S  y  <_  B ) )
2221rspcev 3177 . . . . . . 7  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
236, 19, 22syl2anc 661 . . . . . 6  |-  ( ph  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
24 suprcl 10400 . . . . . 6  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
259, 18, 23, 24syl3anc 1219 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
26 suprub 10401 . . . . . 6  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
279, 18, 23, 16, 26syl31anc 1222 . . . . 5  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
28 suprleub 10404 . . . . . . 7  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
299, 18, 23, 6, 28syl31anc 1222 . . . . . 6  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
3019, 29mpbird 232 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  <_  B )
31 elicc2 11470 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
325, 6, 31syl2anc 661 . . . . 5  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
3325, 27, 30, 32mpbir3and 1171 . . . 4  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  ( A [,] B
) )
341, 33sseldd 3464 . . 3  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e. 
U. U )
35 eluni2 4202 . . 3  |-  ( sup ( S ,  RR ,  <  )  e.  U. U 
<->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3634, 35sylib 196 . 2  |-  ( ph  ->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3714sselda 3463 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  J )
3812rexmet 20499 . . . . . . 7  |-  D  e.  ( *Met `  RR )
39 eqid 2454 . . . . . . . . . 10  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4012, 39tgioo 20504 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  D )
4110, 40eqtri 2483 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
4241mopni2 20199 . . . . . . 7  |-  ( ( D  e.  ( *Met `  RR )  /\  u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u )  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4338, 42mp3an1 1302 . . . . . 6  |-  ( ( u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u
)  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4443ex 434 . . . . 5  |-  ( u  e.  J  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
4537, 44syl 16 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
465ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  e.  RR )
476ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  RR )
4813ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  <_  B
)
4914ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  U  C_  J
)
501ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( A [,] B )  C_  U. U
)
51 simplr 754 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  u  e.  U
)
52 simprl 755 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  w  e.  RR+ )
53 simprr 756 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
54 eqid 2454 . . . . . 6  |-  sup ( S ,  RR ,  <  )  =  sup ( S ,  RR ,  <  )
55 eqid 2454 . . . . . 6  |-  if ( ( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) )  <_  B ,  ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) ) ,  B )  =  if ( ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) )  <_  B , 
( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) ) ,  B )
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 20531 . . . . 5  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  S
)
5756rexlimdvaa 2946 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u  ->  B  e.  S ) )
5845, 57syld 44 . . 3  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
5958rexlimdva 2945 . 2  |-  ( ph  ->  ( E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
6036, 59mpd 15 1  |-  ( ph  ->  B  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   A.wral 2798   E.wrex 2799   {crab 2802    i^i cin 3434    C_ wss 3435   (/)c0 3744   ifcif 3898   ~Pcpw 3967   U.cuni 4198   class class class wbr 4399    X. cxp 4945   ran crn 4948    |` cres 4949    o. ccom 4951   ` cfv 5525  (class class class)co 6199   Fincfn 7419   supcsup 7800   RRcr 9391    + caddc 9395    < clt 9528    <_ cle 9529    - cmin 9705    / cdiv 10103   2c2 10481   RR+crp 11101   (,)cioo 11410   [,]cicc 11413   abscabs 12840   ↾t crest 14477   topGenctg 14494   *Metcxmt 17925   ballcbl 17927   MetOpencmopn 17930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-n0 10690  df-z 10757  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-icc 11417  df-seq 11923  df-exp 11982  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-topgen 14500  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-top 18634  df-bases 18636  df-topon 18637
This theorem is referenced by:  icccmp  20533
  Copyright terms: Public domain W3C validator